説明

Fターム[3G301PF01]の内容

Fターム[3G301PF01]の下位に属するFターム

Fターム[3G301PF01]に分類される特許

141 - 160 / 1,393


【課題】外乱に応じて回転数指令の補正を行い燃費の向上を図る。
【解決手段】主機12に連結された主軸14の実回転数Nを検出する。回転数指令Nおよび実回転数Nの偏差に対し制御演算部17においてPID演算を施す。PID演算により得られたガバナ指令をガバナ13に出力し、主機12へ供給される燃料量を制御する。更に、ガバナ指令および実回転数Nを制御対象Sのオブザーバ18に入力しプロペラ流入速度変動を推定する。演算部19においてプロペラ流入速度変動に所定ゲインを掛け回転数指令Nに加算し、回転数指令Nを補正する。 (もっと読む)


【課題】フューエルカットに伴うショックの発生を抑制すべくトルク制限処理を実行しているときに、内燃機関から車輪までの間に存在するギアの当接位置の変化に伴ってショックが発生してしまうことを抑制することのできる車載内燃機関の制御装置を提供する。
【解決手段】本発明に係る車載内燃機関の制御装置である電子制御装置10は、内燃機関20が発生するトルクを制限し、トルクを徐々に変更するトルク制限処理を、フューエルカットに伴って実行する。電子制御装置10は、トルク制限処理実行中に、内燃機関20から車輪までの間に存在するギア同士の当接位置が切り替わるタイミングを予測し、予測されたタイミングにあわせて、内燃機関20側から出力されるトルクの単位時間当たりの変更量を同タイミングに至る前にトルク制限処理を通じて設定された単位時間当たりの変更量よりも小さくする。 (もっと読む)


【課題】 機関回転数が目標回転数に一致するように、吸気量制御及び点火時期制御を適切に実行し、制御の収束性が悪化することを防止することができる内燃機関の制御装置を提供する。
【解決手段】 エンジン回転数NEと目標回転数NOBJとの偏差DNOBJに応じて、フィードバック制御トルクTRQFBが算出され、フィードバック制御トルクTRQFBに応じて吸気流量制御及び点火時期制御が行われる。フィードバック制御トルクTRQFBは、比例項TRQFBP、積分項TRQFBI、及び微分項TRQFBDの和として算出され、点火時期IGLOGが進角限界値IGLMTAまたは遅角限界値IGLMTRに達しているときは、積分項TRQFBIの算出に適用される積分ゲインKIが第1の値KI1から第2の値KI2(<KI1)に変更される(S22〜S25)。 (もっと読む)


【課題】冷却水温により変化する内燃機関のフリクションの影響を考慮して、アクセル開度が全閉となった状態における吸入空気量を算出する。
【解決手段】アクセル開度が全閉となった状態で当該内燃機関が自立回転する上で最低限必要な吸入空気量である第1回転数維持空気量と、内燃機関が失火しないために最低限必要な吸入空気量である燃焼安定性維持空気量と、を算出し、アクセル開度が全閉となった状態では、吸入空気量として第1回転数維持空気量と燃焼安定性維持空気量のうち大きい方を選択し、選択された空気量に基づいてスロットル開度を制御する。ここで、第1回転数維持空気量及び燃焼安定性維持空気量は、冷却水温が高いほど減量されている。 (もっと読む)


【課題】ブレーキ操作性悪化の懸念を低減させることと燃費向上促進との両立を実現した内燃機関の制御装置を提供する。
【解決手段】運転者の停車意思が検出された時の車速が所定車速Vth未満であれば、アイドルストップシステムによる内燃機関の自動停止を許可するアイドルストップ制御手段S30と、停車意思検出時の車速が所定車速Vth以上であれば、内燃機関から車両駆動輪への動力伝達が遮断されていることを条件として、アイドル運転時の機関回転速度NEidleよりも低く設定した低アイドル回転速度NEaで内燃機関を運転させる低回転制御手段S40と、を備えることを特徴とする。 (もっと読む)


【課題】 運転者の要求出力に応じた目標トルクの設定をより適切に行い、良好な操作感を実現することができる内燃機関の制御装置を提供する。
【解決手段】 アクセルペダル操作量AP及びエンジン回転数NEに応じてドライバ要求係数KGADRVが算出されるとともに、大気圧PA及び吸気温TAに応じて最大吸気量GAMAXが算出される。最大吸気量GAMAXと最小吸気量GAMINの差分(GAMAX−GAMIN)に、ドライバ要求係数KGADRVを乗算することにより基本ドライバ要求吸気量GADRVBが算出され、基本ドライバ要求吸気量GADRVBに最小吸気量GAMINを加算することにより、ドライバ要求吸気量GADRVが算出される。ドライバ要求吸気量GADRVに基づいて、点火時期の遅角補正量DIGRTD及び排気還流率REGRTを考慮してドライバトルクTRQが算出される。 (もっと読む)


【課題】本発明は、燃料の一部が排気ポートへ流出することなく、燃費を向上させるとともに炭化水素の排出を抑制することのできる内燃機関の燃料噴射制御装置を提供することにある。
【解決手段】必要燃料量算出部では、各種センサ類の検出値に基づいて、ドライバの要求出力を発生するために必要な燃料量を算出する。噴射弁制御部では、クランク角センサとカム角センサの検出値に基づいて気筒判別を行う。そして、気筒判別結果より吸気バルブと排気バルブとが同時に開く期間であるバルブオーバーラップ期間とピストンの位置が上死点前後或いは下死点前後の所定範囲内となる期間とを除く吸気行程中の期間である第1の噴射期間に必要燃料量算出部にて算出された必要な燃料量が燃焼室内に到達するように燃料噴射弁を制御する。 (もっと読む)


【課題】ディーゼルエンジンがアイドル状態のときにDPFの再生を行う場合において、排気管から排出される排ガスの排ガス温度とDPFの再生時間とを適切に制御できる排ガス浄化装置を提供する。
【解決手段】DPF13の再生を開始する際、ECU20は、ディーゼルエンジン30がアイドル状態であると判定した場合には、排出温度が目標排出温度T以下になると共にDPF13の床温が目標床温T以上になるディーゼルエンジン30の回転数の範囲を算出する。メモリ40に組み込まれた放熱マップに基づいて、当該範囲内でDPF13の再生時間が最短となる回転数を算出し、ディーゼルエンジン30の回転数を、当該算出された回転数に制御する。 (もっと読む)


【課題】空燃比気筒間インバランス判定装置に関する。
【解決手段】本発明による空燃比気筒間インバランス判定装置(判定装置)の実施形態は、上流側空燃比センサ56の出力値に基いて、機関10に供給される混合気の空燃比の平均を目標空燃比に制御する。判定装置は、インバランス判定用パラメータ取得条件(例えば、車速=0)が成立すると、機関の回転速度が目標回転速度に一致するように吸入空気量を制御する。更に、判定装置は、実際の機関回転速度が目標回転速度に実質的に一致しているときの吸入空気量をインバランス判定用パラメータとして取得し、その吸入空気量と吸入空気量閾値との比較に基いて「空燃比気筒間インバランス状態が発生しているか否か」の判定を行う。 (もっと読む)


【課題】シフトチェンジ燃料カット終了直後において触媒中の酸素吸蔵量を迅速に適切な値まで減少させることと、減速燃料カット終了直後の燃料噴射量を削減して燃費向上との両立を図る。
【解決手段】内燃機関の回転数が所定以上でアクセル開度が所定未満であるときに減速燃料カット制御を行い、燃料カット制御終了時に目標空燃比を理論空燃比よりもリッチ側に設定するリッチ化制御と、燃料カット制御がシフトチェンジの準備操作として行われるシフトチェンジ燃料カットを加えた制御装置において、両燃料カットのどちらであるのかを判定する判定部と、シフトチェンジ燃料カット終了時のリッチ化制御を行う際に設定する目標空燃比と減速燃料カット終了時のリッチ化制御を行う際に設定する目標空燃比とが異なり、後者が前者よりもリーン側である目標空燃比設定部とを具備させる。 (もっと読む)


【課題】アイドルストップ後の再始動の際にNOxが増加することを抑制することができる内燃機関の空燃比制御方法を提供する。
【解決手段】排気経路に酸素ストレージ機能を有する排気浄化触媒を備え、車両の停止により運転が停止され、かつ発進のための操作がなされた際に再始動される内燃機関における再始動後の空燃比制御方法であって、再始動直後のアイドリング時に、排気浄化触媒内部の空燃比がリッチ状態になるように燃料噴射量を増量し、空燃比がリッチである状態を継続させる。 (もっと読む)


【課題】低コストでブースト圧が迅速に上昇し確実に発進ができる発進補助装置を提供する。
【解決手段】ターボチャージャ3より排気流上流に酸化触媒装置5,6が設置され、酸化触媒装置5,6より排気流上流に排気管燃料噴射器7が設置され、車両の発進時に排気管燃料噴射器7からの排気管噴射を実行することでブースト圧を上昇させる発進補助制御部7を有する。 (もっと読む)


【課題】気筒間の燃焼状態のばらつきを改善するように機関制御値を補正する制御を実行する多気筒内燃機関において排気エミッション及びドライバビリティの悪化を抑制する。
【解決手段】気筒の回転変動を抑制するように燃料噴射量を増量補正する制御を実施した際に、その増量補正制御の開始時の機関回転変動量ΔNEsと、増量補正制御を開始した後の機関回転変動量ΔNejとを比較し、回転変動量ΔNejが回転変動量ΔNEs以上である場合は、燃焼状態の改善効果がないと判断して増量補正を中止する。このような制御により、燃料噴射量の増量補正が継続されることによる排気エミッション及びドライバビリティの悪化を抑制することができる。 (もっと読む)


【課題】空燃比センサの応答性に関わらず「気筒別空燃比の不均一性の程度を精度良く表す空燃比不均衡指標値」を空燃比センサの出力値に基いて取得することにより、インバランスを精度良く判定することができる空燃比気筒間インバランス判定装置を提供する。
【解決手段】判定装置は、空燃比センサの出力値の時間微分値に基いて、気筒別空燃比の不均一性の程度が大きいほど大きくなる補正前指標量を取得する。一方、判定装置は、フューエルカット運転中に空燃比センサの出力値が大きいほど大きくなる補正用出力値として求める。判定装置は、補正用出力値が大きいほど(即ち、空燃比センサの応答性が高いほど)、補正前指標量が小さくなるように、補正前指標量を補正して空燃比不均衡指標値を取得する。判定装置は、空燃比不均衡指標値がインバランス判定用閾値以上であるとき、空燃比気筒間インバランス状態が発生したと判定する。 (もっと読む)


【課題】スロットルバルブの実開度が目標開度に対してオーバーまたはアンダーシュートする場合でも、加速時の燃料噴射量を適切に制御できる燃料噴射制御装置を提供する。
【解決手段】スロットルグリップ26の操作状態を検知して、スロットルバルブ28をアクチュエータ31で制御するTBWシステムを備えると共に、スロットルバルブ28の開度Fを検知してインジェクタ29を制御するようにした燃料噴射制御装置において、スロットルバルブ開度センサ31の出力に応じて自動二輪車1の加速状態を検知して燃料の増量補正を実行する際に、スロットルバルブ開度センサ31の出力とスロットルグリップ26の操作状態とに基づいて増量補正値を決定する。自動二輪車1の加速状態が検知された場合であっても、スロットルグリップ26が開き方向に駆動中でない場合には、増量補正値を徐々に減衰させる減衰状態、または、増量補正値をゼロとする中止状態とする。 (もっと読む)


【課題】燃料の性質に応じてリーク判定を好適に行うことが可能な蒸発燃料処理装置を提供する。
【解決手段】蒸発燃料処理装置は、燃料タンクと、キャニスタと、燃料タンクとキャニスタとを連通するベーパ通路に設けられ、当該ベーパ通路を開閉可能な制御バルブ11と、制御バルブを開閉制御するバルブ制御手段2aと、燃料タンクのタンク内圧を検出する圧力センサ16と、タンク内圧の変化が所定の範囲内である場合に、リーク有りと判定するリーク判定手段2cと、燃料タンクのタンク内温度として吸気温度を検出する吸気温度検出手段22と、タンク内圧及びタンク内温度に基づいて、燃料タンク内の燃料が揮発性の高い燃料であるか否かを判定する燃料性質判定手段2bと、を備え、リーク判定手段2cは、揮発性の高い燃料であると判定された場合に、揮発性の高い燃料ではないと判定された場合よりも、所定の範囲を広く設定する。 (もっと読む)


【課題】車両走行中の機関始動に伴って運転者に与えられる違和感を軽減することのできる車載内燃機関制御装置を提供する。
【解決手段】車両1は、駆動輪7を回転させる動力源として内燃機関3及び第2のモータジェネレータMG2を備える。電子制御装置20は、車両走行中に機関始動を行なうに際して、車両の要求駆動力TRQが所定値TRQth以下であるときには、マウント11の変形度合が所定度合以下であると推定して、当該機関始動の2サイクル目の燃料噴射量Q2を1サイクル目の燃料噴射量Q1に対して大きく設定する(Q2>Q1)。一方、車両の要求駆動力TRQが所定値TRQthよりも大きいときには、マウント11の変形度合が所定度合よりも大きいと推定して、当該機関始動の1サイクル目の燃料噴射量Q1を2サイクル目の燃料噴射量Q2に対して大きく設定する(Q1>Q2)。 (もっと読む)


【課題】エンジン1の暖機が完了する前において、オイル希釈に起因するエンジンへの悪影響を回避しつつ、スモークの発生をさらに抑制する。
【解決手段】制御手段(エンジン制御器100)は、エンジン本体1の暖機が完了する前の未暖機状態において、ノック限界と最高トルク発生タイミングとの関係に基づいて、点火時期を最高トルク発生タイミングよりも進角させない第1運転状態と、前記点火時期を前記最高トルク発生タイミングよりも進角させる第2運転状態とを切り替えると共に、
第1運転状態のときには、吸気行程時における燃料噴射時期を進角側の所定時期に設定する一方、第2運転状態のときには、燃料噴射時期を所定時期よりも遅角側に設定する。 (もっと読む)


【課題】エンジン1の暖機が完了する前において、オイル希釈に起因するエンジン1への悪影響を回避しつつ、スモークの発生をさらに抑制する。
【解決手段】制御手段(エンジン制御器100)は、エンジン本体1の暖機が完了する前の未暖機状態において、エンジン本体1の始動時に検出したエンジン本体1の温度に基づいて、当該始動時温度が所定温度よりも低いときには、吸気行程時における燃料噴射時期を進角側の所定時期に設定する一方、始動時温度が所定温度以上のときは吸気行程時における燃料噴射時期を所定時期よりも遅角側に設定する。 (もっと読む)


【課題】エンジン1の暖機が完了する前において、オイル希釈に起因するエンジンへの悪影響を回避しつつ、スモークの発生をさらに抑制する。
【解決手段】制御手段(エンジン制御器100)は、エンジン本体1の暖機が完了する前の未暖機状態において、前回の停止時に検出したエンジン本体の温度に基づいて、当該前回停止時温度がエンジン本体1の完全暖機温度以上のときには吸気行程時における燃料噴射時期を遅角側の所定時期に設定する一方、前回停止時温度が、エンジン本体1の完全暖機温度以上よりも低いときには燃料噴射時期を所定時期よりも進角側に設定する。 (もっと読む)


141 - 160 / 1,393