説明

直噴ガソリンエンジンの制御装置

【課題】エンジン1の暖機が完了する前において、オイル希釈に起因するエンジン1への悪影響を回避しつつ、スモークの発生をさらに抑制する。
【解決手段】制御手段(エンジン制御器100)は、エンジン本体1の暖機が完了する前の未暖機状態において、エンジン本体1の始動時に検出したエンジン本体1の温度に基づいて、当該始動時温度が所定温度よりも低いときには、吸気行程時における燃料噴射時期を進角側の所定時期に設定する一方、始動時温度が所定温度以上のときは吸気行程時における燃料噴射時期を所定時期よりも遅角側に設定する。

【発明の詳細な説明】
【技術分野】
【0001】
ここに開示する技術は、気筒内に燃料を直接噴射する直噴ガソリンエンジンの制御装置に関する。
【背景技術】
【0002】
燃料噴射弁を通じて、気筒内に直接、ガソリンを含有する燃料を噴射する直噴ガソリンエンジンにおいては、ピストンが上死点付近に位置しているような吸気行程の比較的初期のタイミングで燃料を噴射した場合は、ピストン頂面に付着する燃料が増大して、燃料の燃え残りによるスモークが発生し易くなる一方、ピストンがストロークの中間乃至それ以降に位置しているような吸気行程の中期から後期のタイミングで燃料を噴射した場合は、燃料噴射弁に対向する気筒内壁面に付着する燃料が増大することで、オイルパンに入る燃料量が増えてオイル希釈が生じ易くなる。このように、燃料噴射時期が早いときにはスモークが増大する傾向にあり、燃料噴射時期が遅いときにはオイル希釈が増大する傾向にある。
【0003】
これに対し例えば特許文献1には、燃料を分割噴射することによってピストン頂面や気筒内壁面に付着する燃料を低減させ、オイル希釈及びスモークの低減を図る構成が記載されている。この文献にはまた、エンジンの冷間時に、分割噴射のタイミングを、温間時における分割噴射タイミングよりも進角させることで、燃費の悪化やスモークの発生を抑制することも記載されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−121416号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところが、前述したように、オイル希釈とスモークの発生とは、燃料噴射時期の遅早に対して逆の特性を有しているため、特許文献1に記載されているように、エンジンが暖機するまでの間、燃料噴射時期を早めるだけでは、オイル希釈及びスモーク発生のそれぞれを許容できる範囲に収めているに過ぎない。
【0006】
ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、エンジンの暖機が完了する前において、オイル希釈に起因するエンジンへの悪影響を回避しつつ、スモークの発生をさらに抑制することにある。
【課題を解決するための手段】
【0007】
エンジンの未暖機状態においても、エンジンの始動時の温度が比較的高いときには完全暖機温度との温度差が小さく、エンジンは比較的早期に完全暖機に至る。このため、エンジンの完全暖機に至るまでの間にオイルに混入する燃料の量は少なくなる。また、完全暖機後は、オイルの温度が比較的高くなるため、そこに混入している燃料は蒸発し得る。このため、エンジンの完全暖機後は、オイル希釈に起因するエンジンへの悪影響は解消し得る。
【0008】
そこで、ここに開示する技術は、オイル希釈が問題にならない乃至ほとんど問題にならない状況下、具体的にはエンジンの始動時の温度が所定温度よりも高いときには、エンジンが未暖機状態において多少の燃料がオイルに混入することは許容し得るとの観点から、オイル希釈よりもスモークの抑制を優先した制御を行う。このことによって、オイル希釈に起因するエンジンへの悪影響を回避しつつ、スモークの発生を可及的に抑制することにした。
【0009】
具体的に、ここに開示する直噴ガソリンエンジンの制御装置は、ガソリンを含有する燃料が供給されるエンジン本体と、前記エンジン本体においてピストンが嵌挿された気筒内に前記燃料を噴射する燃料噴射弁と、前記燃料噴射弁の制御を通じて、前期気筒内への燃料供給を制御する制御手段と、を備える。
【0010】
そして、前記燃料噴射弁は、前記気筒内での燃料噴射方向が、前記気筒内壁面乃至上死点付近での前記ピストンの頂面に指向するように設定され、前記制御手段は、前記エンジン本体の暖機が完了する前の未暖機状態において、前記エンジン本体の始動時に検出したエンジン本体の温度に基づいて、当該始動時温度が所定温度よりも低いときには、吸気行程時における前記燃料噴射時期を進角側の所定時期に設定する一方、前記始動時温度が前記所定温度以上のときは吸気行程時における前記燃料噴射時期を前記所定時期よりも遅角側に設定する。
【0011】
ここで、「燃料噴射弁は、前記気筒内での燃料噴射方向が、前記気筒内壁面乃至上死点付近での前記ピストンの頂面に指向する」ことは、より具体的には、吸気行程における相対的に早い時期であって、ピストンが上死点付近に位置しているときに、燃料噴射弁から燃料が噴射されたときには、そのピストンの頂面に燃料が付着し易くなる一方、吸気行程における相対的に遅い時期であって、ピストンがストロークの中間乃至それ以降に位置しているときに燃料が噴射されたときには、気筒内壁面に燃料が付着し易くなることを意味する。これは、燃料噴射弁が、例えばシリンダヘッドの一側でかつ、吸気ポートの下側に配置されるような場合を含み得る。
【0012】
また、「エンジン本体の暖機が完了する前の未暖機状態」とは、エンジンの温度、つまり、エンジン水温又はオイル温度が、予め設定された完全暖機温度に到達する前の状態と定義することが可能である。
【0013】
「始動時温度が所定温度よりも低いときには、吸気行程時における前記燃料噴射時期を進角側の所定時期に設定する」ことは、始動時温度と完全暖機温度との差が大きく、完全暖機に至るまでに長い時間を要して、その間に多量の燃料がオイルに混入する虞があることから、オイル希釈を十分に抑制しつつ、スモークも抑制するように燃料噴射時期を進角側の所定時期に設定することを意味する。これによって、オイル希釈とスモークの発生との双方を、可及的に低減する。
【0014】
これに対し、「始動時温度が前記所定温度以上のときは吸気行程時における前記燃料噴射時期を前記所定時期よりも遅角側に設定する」ことは、前述した所定時期での噴射時期と比較して、オイル希釈については不利になる一方、スモークについては有利になるような噴射時期と定義することが可能である。
【0015】
前記の構成によると、エンジン本体の未暖機状態においては、始動時のエンジン温度に応じて、燃料噴射時期を変更する制御を実行する。つまり、始動時温度が所定温度よりも低いときには、オイルに混入する燃料の量が増える虞があるため、オイル希釈の発生を十分に抑制すると共に、スモークの発生も低減する目的で、燃料噴射時期を、相対的に進角側の所定時期に設定する。これによって、前述したように、オイル希釈とスモークとの双方を可及的に低減させ得るため、オイル内への燃料の混入を抑制して、オイル希釈に起因するエンジンへの悪影響を回避しつつ、スモークを可及的に抑制し得る。
【0016】
一方、始動時温度が所定温度以上のときには、完全暖機に至るまでの時間が短く、オイルに混入する燃料の量が少なくなると共に、完全暖機後はその混入した燃料が蒸発し得る。このため、完全暖機に至るまでの間にオイル内に多少の燃料が混入しても、大きな問題にはならずに許容し得ることから、燃料噴射時期を、前記所定時期よりも遅角側に設定する。これによって、スモークの発生については、前記燃料噴射時期を進角側の所定時期に設定する場合よりも低減させ得る。従って、この場合は、オイル希釈に起因するエンジンへの悪影響を回避しつつ、スモークの発生をより一層低減し得る。
【0017】
前記制御手段は、前記始動時温度が前記所定温度以上のときは、前記燃料噴射の開始時期を、前記吸気行程を前期、中期及び後期に区分したときの中期に設定する、としてもよい。こうすることで、スモークを大幅に低減させることが可能になり、前述したように、オイル希釈に起因するエンジンへの悪影響を回避しつつ、スモークの発生をより一層低減し得る。
【発明の効果】
【0018】
以上説明したように、前記直噴ガソリンエンジンの制御装置は、エンジンの未暖機状態においては、始動時におけるエンジン本体の温度に応じて、燃料噴射時期をオイル希釈とスモーク発生との双方を考慮した相対的に進角側の時期から、スモークを重視した相対的に遅角側の時期に変更することで、オイル内に燃料が蓄積してエンジンへ悪影響が及ぶことを確実に回避しつつ、スモークの発生を可及的に低減し得る。
【図面の簡単な説明】
【0019】
【図1】直噴ガソリンエンジン及びその制御装置の構成を示す概略図である。
【図2】燃料噴射時期に対する、スモーク発生及びオイル希釈の関係を示す図である。
【図3】噴射時期に対する気筒内壁面及びピストン頂面への燃料の付着状況の違いを説明する図であり、(a)噴射時期が相対的に遅い場合、(b)噴射時期が相対的に早い場合である。
【図4】エンジン制御器が実行する燃料噴射時期の制御に係るフローチャートである。
【図5】始動時エンジン水温に対する燃料噴射時期のマップの一例である。
【発明を実施するための形態】
【0020】
以下、直噴ガソリンエンジンの制御装置を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎない。図1に示されるように、エンジン・システムは、エンジン(エンジン本体)1、エンジン1に付随する様々なアクチュエーター、様々なセンサ、及びセンサからの信号に基づきアクチュエーターを制御するエンジン制御器100を有する。
【0021】
エンジン1は、火花点火式内燃機関であって、図示は省略するが、第1〜第4の4つの気筒11,11,…を有する。エンジン1は、自動車等の車両に搭載され、その出力軸は、図示しないが、変速機を介して駆動輪に連結されている。エンジン1の出力が駆動輪に伝達されることによって、車両が推進する。エンジン1は、シリンダブロック12と、その上に載置されるシリンダヘッド13とを備えており、ブロック12の内部に気筒11,11,…が形成されている。周知のように、シリンダブロック12には、ジャーナル、ベアリングなどによりクランクシャフト14が回転自在に支持されており、このクランクシャフト14が、コネクティングロッド16を介してピストン15に連結されている。
【0022】
前記ピストン15は、各気筒11内に摺動自在に嵌挿されており、気筒11及びシリンダヘッド13と共に燃焼室17を区画している。図1には1つのみ示すが、気筒11毎に2つの吸気ポート18がシリンダヘッド13に形成され、それぞれが燃焼室17に連通している。同様に、気筒11毎に2つの排気ポート19がシリンダヘッド13に形成され、それぞれが燃焼室17に連通している。図に示すように、吸気弁21及び排気弁22はそれぞれ、吸気ポート18及び排気ポート19を燃焼室17から遮断(閉)することができるように配設されている。吸気弁21は吸気弁駆動機構30により、排気弁22は排気弁駆動機構40により、それぞれ駆動され、それによって所定のタイミングで往復動して、吸気ポート18及び排気ポート19を開閉する。
【0023】
吸気弁駆動機構30及び排気弁駆動機構40は、それぞれ吸気カムシャフト31及び排気カムシャフト41を有する。カムシャフト31,41は、周知のチェーン/スプロケット機構等の動力伝達機構を介してクランクシャフト14に連結される。動力伝達機構は、周知のように、クランクシャフト14が二回転する間に、カムシャフト31,41を一回転させる。
【0024】
吸気弁駆動機構30は、吸気カムシャフト31の位相を所定の角度範囲内で連続的に変更可能な、液圧式又は機械式の位相可変機構(Variable Valve Timing:VVT)32を含んで構成されている。VVT32は、図示は省略するが、吸気カムシャフト31における、エンジン1の前端部に取り付けられる。吸気カムシャフト31の位相角は、カム位相センサ35により検出され、その出力信号がエンジン制御器100に入力される。
【0025】
点火プラグ51は、例えばねじ等の周知の構造によって、シリンダヘッド13に取り付けられている。点火プラグ51の電極は燃焼室17の天井部に臨んでいる。点火システム52は、エンジン制御器100からの制御信号を受けて、点火プラグ51が所望の点火タイミングで火花を発生するよう、それに通電する。
【0026】
燃料噴射弁53は、例えばブラケットを使用する等の周知の構造で、この実施形態ではシリンダヘッド13の一側(図例では吸気側)に取り付けられている。燃料噴射弁53の先端は、上下方向については2つの吸気ポート18の下方に、また、水平方向については2つの吸気ポート18の中間に位置して、燃焼室17内に臨んでいる。燃料噴射弁53の配置はこれに限定されるものではない。燃料噴射弁53はまた、例えば多噴口型の燃料噴射弁であるが、これに限定されるものではない。
【0027】
燃料供給システム54は、燃料噴射弁53に燃料を昇圧して供給する高圧ポンプ(燃料噴射ポンプ)と、この高圧ポンプに対して燃料タンクからの燃料を送る配管やホース等と、燃料噴射弁53を駆動する電気回路と、を備えている。前述したように、前記燃料噴射弁53が多噴口型である場合は、微小な噴口から燃料を噴射するために、燃料噴射圧力は比較的高く設定される。電気回路は、エンジン制御器100からの制御信号を受けて燃料噴射弁53を作動させ、所定のタイミングで所望量の燃料を、燃焼室17内に噴射させる。このエンジン1は、いわゆる直噴エンジンである。
【0028】
吸気ポート18は、吸気マニホルド55内の吸気経路55bによってサージタンク55aに連通している。図示しないエアクリーナからの吸気流は、スロットルボデー56を通過してサージタンク55aに供給される。スロットルボデー56にはスロットル弁57が配置されており、このスロットル弁57は、周知のようにサージタンク55aに向かう吸気流を絞って、その流量を調整する。スロットル・アクチュエーター58が、エンジン制御器100からの制御信号を受けて、スロットル弁57の開度を調整する。
【0029】
排気ポート19は、排気マニホルド60内の排気経路によって周知のように排気管内の通路に連通している。排気マニホルド60よりも下流の排気通路には、1つ以上の触媒コンバータ61を有する排気ガス浄化システムが配置される。触媒コンバータ61は、周知の三元触媒、リーンNOx触媒、酸化触媒等とすることができ、それ以外にも、特定の燃料制御手法による排気ガス浄化の目的にかなうものであれば、いかなるタイプの触媒としてもよい。
【0030】
また、排気ガスの一部を吸気系に循環させる(以下、EGRともいう)ために、吸気マニホルド55(スロットル弁57よりも下流側)と排気マニホルド60との間がEGRパイプ62によって接続されている。排気側の圧力は吸入側よりも高いので、排気ガスの一部は吸気マニホルド55に流れ込むようになり(EGRガスと呼ぶ)、この吸気マニホルド55から燃焼室17に吸入される新気と混ざることになる。EGRパイプ62にはEGRバルブ63が配設され、このバルブ63によってEGRガスの流量を調整する。EGRバルブ・アクチュエーター64は、エンジン制御器100からの制御信号を受けて、EGRバルブ63の開度を調整する。
【0031】
エンジン制御器100は、周知のマイクロコンピュータをベースとするコントローラであって、プログラムを実行する中央演算処理装置(CPU)と、例えばRAMやROMにより構成されてプログラム及びデータを格納するメモリと、電気信号の入出力をする入出力(I/O)バスと、を備えている。
【0032】
エンジン制御器100は、エアフローセンサ71からの吸気流量、吸気圧センサ72からの吸気マニホルド圧、クランク角センサ73からのクランク角パルス信号、水温センサ78からのエンジン水温、というように、種々の入力を受ける。エンジン制御器100は、例えばクランク角パルス信号に基づいて、エンジン回転数を計算する。また、エンジン制御器100は、酸素濃度センサ74からの排気ガスの酸素濃度の入力も受ける。さらに、エンジン制御器100は、アクセル・ペダルの踏み込み量を検出するアクセル開度センサ75からのアクセル開度信号を受ける。またエンジン制御器100には、変速機の出力軸の回転速度を検出する車速センサ76からの車速信号が入力される。さらに、シリンダブロック12には、当該シリンダブロック12の振動を電圧信号に変換して出力する加速度センサからなるノックセンサ77が取り付けられており、その出力信号もエンジン制御器100に入力される。
【0033】
エンジン制御器100は前記のような入力に基づいて、以下のようなエンジン1の制御パラメーターを計算する。例えば、所望のスロットル開度信号、燃料噴射パルス、点火信号、バルブ位相角信号、EGR開度信号等である。そしてエンジン制御器100は、それらの信号を、スロットル・アクチュエーター58、燃料供給システム54、点火システム52、VVT32及びEGRバルブ・アクチュエーター64等に出力する。
【0034】
エンジン制御器100が実行するエンジン1の制御について最も特徴的な点は、エンジン1の始動時、より具体的には、エンジン1の未暖機状態での燃料噴射時期に関する制御であり、この制御を実行することにより、オイル希釈に起因するエンジン1への悪影響を回避しつつも、エンジン1の未暖機状態におけるスモークの発生を可及的に低減する。以下、図を参照しながらこの燃料噴射制御について説明する。
【0035】
図2は、回転数1500rpm、水温50度(つまり、未暖機状態)でエンジン1を運転させる条件で、吸気行程中における燃料噴射時期、より正確には燃料噴射終了時期を変更した場合の、オイル希釈率及びスモークの発生量の関係を示している。同図において明らかなように、燃料噴射終了時期を遅角側(図2における左側)に設定することによってスモークは少なくなり、スモークの発生については有利になる一方で、オイル希釈率は高くなって、オイル希釈については不利になる。これは図3(a)に模式的に示すように、燃料噴射時期が吸気行程における中期乃至後期に設定されることにより、ピストン15が、そのピストンストロークの中間乃至それ以降に位置しているときに燃料噴射弁53を通じて燃料が噴射されるため、噴射された燃料は、燃料噴射弁53に対向する気筒11の内壁面に多く付着する一方(同図におけるハッチングを参照)、ピストン15の頂面に付着する燃料量は少なくなるためである。逆に、燃料噴射時期を進角側(図2における右側)に設定することによって、オイル希釈については有利になる一方で、スモークの発生については不利になる。これは図3(b)に示すように、燃料噴射時期が吸気行程における前期に設定されることにより、ピストン15が吸気上死点付近に位置しているときに燃料噴射弁53を通じて燃料が噴射されるため、噴射された燃料はピストン15の頂面に多く付着する一方(同図におけるハッチングを参照)、気筒11の内壁面に付着する燃料量は少なくなるためである。このように、燃料噴射時期の遅早に対するオイル希釈の特性とスモークの特性とは逆であるため、オイル希釈とスモークの発生との双方を最低限に抑制するような燃料噴射時期は存在しない。そこで、オイル希釈とスモークの発生とを共に抑制しようとすれば、オイル希釈を許容範囲内に収めつつ、スモークの発生も許容範囲に収めるような燃料噴射時期に設定することになる。具体的に前記のエンジン制御器100は、エンジン1の未暖機状態において(エンジン冷間時に)、オイル希釈及びスモークの発生を共に許容範囲内に収めるべく、燃料噴射の終了時期(以下、この燃料噴射の終了時期を単に燃料噴射時期と呼ぶ場合がある)を、比較的進角側であるBTDC285°CAに設定する。この燃料噴射時期を、以下においては冷間用噴射時期と呼ぶ場合がある(図5も参照)。
【0036】
これに対し、エンジン1の完全暖機後は、気筒11の内壁面に多少の燃料が付着しても気化し易いため、オイルに混入する燃料の量は減少すると共に、仮にオイルに燃料が混入してもオイルの温度が高いことで燃料が蒸発し易く、オイル内に燃料が蓄積することは抑制される。このことから、エンジン1の完全暖機後は、スモークの発生が最も抑制されるように、燃料噴射時期を、前記の冷間用噴射時期よりも遅角側に設定する。具体的に前記のエンジン制御器100は、エンジン1の完全暖機後(より詳細には、後述するように、エンジン水温が完全暖機温度よりも低い第2温度以上の温間時)は、燃料噴射時期をBTDC260°CAに設定する。この噴射時期は、スモークを重視した温間用噴射時期と言うことができる(図5も参照)。
【0037】
ところが、前述したように燃料噴射時期を冷間用噴射時期に設定することは、オイル希釈及びスモークの発生を共に許容範囲内に収めることしかできない一方で、オイル希釈に関しては、エンジン1が完全暖機に至ればオイル内にはオイルがほとんど残らなくなることから、オイル希釈に起因するエンジンへの悪影響は解消し得る。また、エンジン1の始動時に完全暖機まで早期に至ることができるのであれば、その間にオイルに混入する燃料の量は少なくかつ、仮にオイルに燃料が混入したとしても、完全暖機後には蒸発し得る。このことから、エンジン制御器100は、エンジンの未暖機状態においては、エンジン始動時の水温に応じて、前述した冷間用噴射時期と温間用噴射時期との間で燃料噴射時期を変更する。
【0038】
つまり、始動時のエンジン水温が比較的高いときには、その始動時の水温と完全暖機温度との温度差が小さいため、エンジン1が完全暖機に至るまでの時間が短く、その間にオイルに混入する燃料の量は少なくなる。このため、エンジン1が完全暖機に至るまで間に、多少の燃料がオイルに混入することを許容しても、エンジン1が完全暖機に至った後にオイル内に混入した燃料の全て又はそのほとんどが蒸発し得る。つまり、オイル内に燃料が蓄積することがなく、エンジン1への悪影響を回避し得る。そこで、エンジン制御器100は、図5に示すように、エンジン1の始動時の水温が所定温度(第1温度)よりも低いときには、燃料噴射時期を前記冷間用噴射時期に設定する一方で、エンジン1の始動時の水温が第1温度以上のときには、オイルへの燃料の混入を多少許容しつつも、スモークの発生はより一層抑制すべく、燃料噴射時期を冷間用噴射時期よりも遅角側に設定する。この場合、燃料噴射の開始時期は、吸気行程を前期、中期及び後期に分けたときの中期に相当する。
【0039】
次に図4に示すフローチャートを参照しながら、前記エンジン制御器100が実行する、前述した燃料噴射時期の制御について説明する。このフローは、エンジン1の始動によってスタートし、先ずステップS41では、水温センサ78からの信号に基づき、始動時におけるエンジン水温を読み込む。そうして、ステップS42において、エンジン始動時のエンジン水温が予め設定した第1温度未満であるか否かを判定する。この第1温度は、図5に示すように、比較的低い温度あって、エンジン水温がこの第1温度よりも低いときには、気筒11の内壁面に付着した燃料が気化し難くかつ、エンジン1の完全暖機までに長い時間を要することで、その間に比較的多量の燃料がオイルに混入する虞がある温度として適宜設定される温度であり、例えば10度程度に設定される。ステップS42において、エンジン始動時の水温が第1温度未満であるとき(YESのとき)には、エンジン1が冷間であるとしてステップS43に移行し、図5に示すように冷間用噴射時期(BTDC285°CA)で燃料噴射を実行する。また、その後はエンジン水温の上昇に応じて、燃料噴射時期を遅角させていく。こうして、ステップS43では、オイル希釈を十分に抑制しつつ、スモークの発生も許容範囲内に収めることが可能になる。
【0040】
一方、ステップS42において、エンジン始動時のエンジン水温が第1温度以上であるとき(NOのとき)には、ステップS44に移行し、そのステップS44では、エンジン始動時のエンジン水温が第2温度未満であるか否かを判定する。この第2温度は、図5に示すように、エンジン1の完全暖機温度よりも低くかつ、第1温度よりも高い温度あって、エンジン水温がこの第2温度よりも高いときには、気筒11の内壁面に付着した燃料が気化し易くかつ、エンジン1の完全暖機までにほとんど時間を要しないため、その間にオイルに混入する燃料量が少なく、さらに、その完全暖機後には燃料が蒸発してオイル内には燃料が(ほとんど)存在しなくなる温度として適宜設定される温度であり、例えば60度程度に設定される。ステップS44において、今回のエンジン始動時のエンジン水温が第2温度以上であるとき(NOのとき)には、エンジン1が温間であるとしてステップS45に移行し、温間用噴射時期(BTDC260°CA)で燃料噴射を実行する。こうして、ステップS45では、オイル希釈に起因するエンジン1への悪影響を回避しつつ、スモークの発生を十分に抑制することが可能になる。
【0041】
一方、ステップS44において、今回のエンジン始動時のエンジン水温が第2温度未満であるとき(YESのとき)には、エンジン1が半暖機であるとしてステップS46に移行する。ステップS46では、始動時のエンジン水温と、完全暖機時の水温との差分に基づいて噴射時期の補正値を算出し、冷間用噴射時期からその補正値分だけ遅角させた時期で、燃料噴射を実行する。これによって、例えば図5に示すように、エンジン1の始動時の水温が第1温度と第2温度との間にあるときには、冷間用噴射時期と温間用噴射時期との間で線形補間により設定される噴射時期で燃料噴射が実行される。その後は、エンジン水温の上昇に伴い噴射時期を遅角側に変更する。例えば図5の斜めの線に沿うように噴射時期を遅角側に変更してもよい。こうして、ステップS49では、オイル希釈によるエンジン1への悪影響を回避しつつも、スモークの発生を可及的に低減することが可能になる。
【0042】
このように、前述したエンジン1の燃料噴射制御によると、エンジン1の未暖機時においては、エンジン1の始動時の水温に応じて、始動時水温が比較的高く、短時間でエンジンの完全暖機に至るような場合には、オイル内に燃料が多少混入することを許容する一方で、スモークの発生を抑制するために、燃料噴射時期を冷間時噴射時期よりも遅角側に設定する(ステップS45,S46)。これによって、オイル希釈に起因するエンジン1への悪影響は回避しつつ、スモークの発生を可及的に抑制し得る。
【0043】
こうした制御は、燃料噴射弁53が多噴口型であって燃料噴射圧力が比較的高く設定されることにより、燃料噴霧の貫徹力が相対的に強くなる場合、換言すれば気筒11の内壁面への燃料の付着量が増えてオイル希釈が生じ易い場合に特に有効である。尚、単噴口型の燃料噴射弁を採用した場合に、前述した制御を行うことも勿論可能である。
【0044】
また、図4に示すフローチャートや図5に示すマップでは、エンジン水温に基づいて燃料噴射時期の変更をするようにしているが、これに代えてエンジンオイルの温度に基づいて燃料噴射時期の変更を行うようにしてもよい。
【0045】
また、前記で説明した燃料噴射は、必要量の燃料を1回で噴射する場合、及び、複数回に分割して噴射する場合の双方を含み得る。例えば分割噴射の場合、その時期を変更することは、複数回の燃料噴射の全体を遅角側及び進角側に変更すればよい。
【符号の説明】
【0046】
1 直噴ガソリンエンジン(エンジン本体)
100 エンジン制御器(制御手段)
11 気筒
15 ピストン
53 燃料噴射弁

【特許請求の範囲】
【請求項1】
ガソリンを含有する燃料が供給されるエンジン本体と、
前記エンジン本体においてピストンが嵌挿された気筒内に前記燃料を噴射する燃料噴射弁と、
前記燃料噴射弁の制御を通じて、前期気筒内への燃料供給を制御する制御手段と、を備え、
前記燃料噴射弁は、前記気筒内での燃料噴射方向が、前記気筒内壁面乃至上死点付近での前記ピストンの頂面に指向するように設定され、
前記制御手段は、前記エンジン本体の暖機が完了する前の未暖機状態において、前記エンジン本体の始動時に検出したエンジン本体の温度に基づいて、当該始動時温度が所定温度よりも低いときには、吸気行程時における燃料噴射時期を進角側の所定時期に設定する一方、前記始動時温度が前記所定温度以上のときは吸気行程時における前記燃料噴射時期を前記所定時期よりも遅角側に設定する直噴ガソリンエンジンの制御装置。
【請求項2】
請求項1に記載の直噴ガソリンエンジンの制御装置において、
前記制御手段は、前記始動時温度が前記所定温度以上のときは、前記燃料噴射の開始時期を、前記吸気行程を前期、中期及び後期に区分したときの中期に設定する直噴ガソリンエンジンの制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−12945(P2012−12945A)
【公開日】平成24年1月19日(2012.1.19)
【国際特許分類】
【出願番号】特願2010−147519(P2010−147519)
【出願日】平成22年6月29日(2010.6.29)
【出願人】(000003137)マツダ株式会社 (6,115)
【Fターム(参考)】