説明

Fターム[3G066DC14]の内容

燃料噴射装置 (54,956) | パラメータ (4,781) | 温度 (753) | 機関温度 (467)

Fターム[3G066DC14]に分類される特許

1 - 20 / 467


【課題】失火が発生したときの噴射状態に合わせて異常時運転状態を記憶する。
【解決手段】失火が発生した際の内燃機関(エンジン)の運転状態(エンジン回転数、負荷率、暖機状態)と噴射状態(DUAL噴射、DI噴射、PFI噴射)とを記憶し、噴射状態ごとに異常時運転状態を求めるとともに、失火異常の検出期間内で失火が発生した各噴射状態ごとの失火の回数に基づいて異常時噴射状態を決定する。そして、その決定した異常時噴射状態での異常時運転状態を記憶する。このような処理により、失火が発生したときの噴射状態に合わせて異常時運転状態を記憶することができるので、失火異常検出の後に、正常復帰判定を実施するにあたり、その正常復帰判定を適正に行うことができる。 (もっと読む)


【課題】燃料圧力制御における過渡期の制御性能を改善する。
【解決手段】各種センサからエンジン運転状態としての負荷,回転速度,水温及び実燃圧(検出燃圧)を読み込み(S1)、負荷,回転速度及び水温に応じた目標燃圧を演算すると共に(S2)、燃料供給配管における燃圧を目標燃圧とするためのフィードフォワード操作量を演算する(S3)。また、目標燃圧に対して燃料ポンプを所定の特性で応答させるための規範燃圧を演算し(S4)、規範燃圧と検出燃圧との偏差をなくすフィードバック操作量を演算する(S5,6)。そして、検出燃圧及び回転速度に応じた平滑化係数を演算し(S7)、この平滑化係数を利用してフィードバック操作量を平滑化する(S8)。その後、フィードフォワード操作量と平滑化されたフィードバック操作量から燃料ポンプの操作量を演算し(S9)、この操作量に応じて燃料ポンプを制御する(S10)。 (もっと読む)


【課題】低温時において放電スイッチ10のオフ後に生じる放電電流のオーバーシュート時の最大値が低下することを抑える。
【解決手段】コンパレータ43は、放電電流が閾値を越えると、ローレベル信号をANDゲート45に出力する。このため、ANDゲート45がローレベル信号を放電スイッチ10に出力するので、放電スイッチ10がオフする。アルミ電解コンデンサ20が常温であるとき切替スイッチ46の設定により、閾値を狙い値I1に設定し、アルミ電解コンデンサ20が低温であるとき切替スイッチ46の設定により、閾値を放電電流の狙い値I2に設定する。狙い値I2は、狙い値I1に補正値ΔIを加えた値である。補正値ΔIは、低温時の放電スイッチ10のオフ後の放電電流の最大値を、常温時の放電スイッチ10のオフ後の放電電流の最大値VP2に近づけるように設定されている。 (もっと読む)


【課題】本発明は、コストの上昇を抑制しつつ、ノックの発生を抑制することのできる筒内噴射式内燃機関の燃料噴射装置を提供する。
【解決手段】体積効率が所定値以上(S10-S12)で、エンジンの行程が排気行程であって(S14)、第1排気バルブの閉弁後で(S16)、吸気バルブの開弁前であれば(S18)、第2排気バルブよりも開弁時期を早く設定された第1排気バルブに向けて燃料噴射弁より燃料を噴射する掃気噴射を実施する(S20)。 (もっと読む)


【課題】筒内噴射用インジェクタと吸気通路噴射用インジェクタとを備えた内燃機関において、簡易かつ低コストな制御手段によって、高圧ポンプに装備されたスピル弁の本来の機能を損なうことなく、スピル弁に起因した騒音を低減する。
【解決手段】燃料タンク34の燃料を、低圧ポンプ40で低圧燃料供給管36及び低圧燃料分配管44を介して、インテーク・マニホールド14に装着された吸気通路噴射用インジェクタ26に供給する。低圧燃料供給管36には高圧ポンプ32が設けられ、燃料は高圧ポンプ32で高圧となり、高圧燃料分配管28を介して筒内噴射用インジェクタ24に供給される。吸気通路噴射(MPI)モードのとき、ソレノイド334の励磁を止め、電磁スピル弁330の作動を停止させる。これによって、電磁スピル弁330の弁座への着座による振動及び騒音を低減できる。 (もっと読む)


【課題】この発明は、内燃機関の燃料噴射制御装置に関し、車両システムの起動中に内燃機関を自動的に停止させる機能を有する車両に適用した場合に、内燃機関の停止中に燃料噴射弁の噴孔部を腐食から保護することと、そのような保護のための燃料噴射弁の動作によって排気エミッションや燃費が悪化しないようにすることをバランス良く両立することを目的とする。
【解決手段】アイドルストップ機能を有する車両に搭載される内燃機関10に燃料を噴射する燃料噴射弁12を備える。エンジン停止時においてトルク発生のための燃料噴射の停止後に、燃料噴射弁12の噴孔部(噴孔12eの内壁面やサック12dの壁面)に燃料が付着するように、少量の燃料噴射を実行する。アイドルストップによる停止時には、アイドルストップによるエンジン停止後にIGスイッチ44がOFFとされる動作が実行される確率が所定値以上である場合に限って、上記少量の燃料噴射を実行する。 (もっと読む)


【課題】装置の大型化を回避しつつ、ピストン摺動長を拡大可能にする。
【解決手段】コモンレール1の取付筒部101に、フローダンパ20が螺合される雄ねじ106を形成するとともに、取付筒部先端面103をピストン210のストッパとして機能させることにより、螺合部とピストン摺動部を軸方向にずらした構成を実現しつつ、従来の燃料噴射装置におけるフローダンパのキャップを廃止可能にしている。そして、キャップの廃止により、装置の大型化(すなわち、長さHの増加)を回避しつつ、ピストン摺動長の拡大を可能にしている。したがって、摺動クリアランス内でのピストン210の倒れを小さくし、ピストン210の摺動性の悪化や作動流量性能の悪化を抑制することができる。 (もっと読む)


【課題】電力回生装置が回収した電力をバッテリに蓄える車両において、余剰電力を有効利用して車両のエネルギー効率を改善する。
【解決手段】バッテリの充電状態が設定値よりも高く(ステップS201)、かつ、電力回生装置が余剰電力を回収する場合(ステップS202)に、前記余剰電力を用いて、燃料供給装置が内燃機関に供給する燃料の圧力を上昇させる(ステップS203)。余剰電力を用いて燃料の圧力を上昇させた直後は、燃料圧力が目標よりも高い状態が発生し、燃料供給装置における消費電力が低下する。 (もっと読む)


【課題】脈動による燃圧ピーク値を抑えるとともに燃料噴射量も好適に確保することのできる内燃機関の燃料噴射制御装置を提供する。
【解決手段】エンジン11は、ポート噴射用インジェクタ22と筒内噴射用インジェクタ17とを備える。電子制御装置30は、筒内噴射用インジェクタ17に供給される燃料の圧力が機関運転状態に基づいて設定される目標圧力となるように制御する。また、電子制御装置30は、燃料の温度が低いときには、筒内噴射用インジェクタ17に供給される燃料の圧力が、機関運転状態に基づいて設定される目標圧力よりも低い圧力となるように制限する制限処理を実行する。 (もっと読む)


【課題】バルブニードルを確実に一方向に回転させるようにして、バルブニードルとバルブボディの偏摩耗を防止することができる流量制御弁を提供すること。
【解決手段】流量制御弁16は、バルブニードル33を閉弁方向または開弁方向に付勢してバルブニードル33の初期位置を保持するリターンスプリング35と、バルブボディ31に設けられ、リターンスプリング35の一端部が固定される固定部83とを備え、バルブニードル33とリターンスプリング35の他端部との接触部に、バルブニードル33の閉弁方向または開弁方向への移動に伴うリターンスプリング35の伸縮時に、バルブニードル33が軸線回りの一方向に回転することを許容し他方向に回転することを規制する逆転防止機構85を設けるように構成されている。 (もっと読む)


【課題】この発明は、燃料噴射弁の噴射率を大きくしなくても、広い運転領域において燃料の微粒化を促進しつつ、片側吸気運転を実行することを目的とする。
【解決手段】エンジン10は、1つの燃焼室12に接続された吸気ポート20A,20Bと、吸気ポート20A,20Bに個別に燃料を噴射する燃料噴射弁24A,24Bと、一方の吸気ポート20Aに設けられた片側吸気用噴射弁26とを備える。そして、吸気バルブ30Bを閉弁停止した片側吸気運転を行うときに、エンジンの要求噴射量が燃料噴射弁24Aの最大噴射量を超える場合には、燃料噴射弁24Aと片側吸気用噴射弁26の両方により燃料を噴射する。これにより、燃料噴射弁24Aの噴射率を大きくしなくても、片側吸気運転を適用可能な負荷領域を高負荷側に拡大することができる。 (もっと読む)


【課題】燃焼室内に生じる空気流動のうち、上昇気流もしくは下降気流に着目し、これらが噴射された燃料に及ぼす影響を抑制し、シリンダ壁面やピストン頂面への燃料付着を低減することで、オイル希釈やスモークの発生などを抑制することのできる燃料噴射制御装置を提供する。
【解決手段】本願発明の燃料噴射制御装置である電子制御装置30は、燃料の噴射角度を変更することのできる燃料噴射弁18を制御することにより、燃焼室11内に噴射する燃料の噴射角度を変更する。電子制御装置30は吸気行程中に燃料を噴射する場合には、開弁している吸気バルブ24と弁座との隙間から燃焼室11内に流入する空気の流速が速いときに燃料を噴射するときほど燃料の噴射角度を吸気バルブ24側に傾ける。 (もっと読む)


【課題】燃料カット後の燃料噴射復帰時にトルクショックを抑制できるエンジンの燃料噴射制御装置を提供する。
【解決手段】直噴弁2と、ポート噴射弁5と、燃料カット実行手段111と、燃料カットからの復帰時においてエンジンに生じるトルクショックを許容内に収めるために必要な復帰時燃料供給量を求める復帰時燃料供給量検出手段112と、復帰時燃料供給量を直噴弁2が噴射可能な直噴最小燃料噴射量及びポート噴射弁5が噴射可能なポート最小燃料噴射量と比較し、比較結果に応じて、直噴弁2又はポート噴射弁5を選択して作動させる噴射弁制御手段113と、を備え、噴射弁制御手段113は、直噴最小燃料噴射量及びポート最小燃料噴射量が共に前記復帰時燃料供給量以下である場合、エンジン回転数が所定回転数以下であれば前記ポート噴射弁5を選択し、所定回転数より大きければ前記直噴弁2を選択して作動させることを特徴とする。 (もっと読む)


【課題】騒音およびNOxの低減と、排気に含まれるPMの低減とを両立する内燃機関の燃料噴射制御装置を提供する。
【解決手段】パイロット噴射時にインジェクタ12へ供給する燃料の圧力は、メイン噴射時にインジェクタ12へ供給する燃料の圧力よりも低く設定される。これにより、パイロット噴射においてインジェクタ12から噴射された燃料は、インジェクタ12の周囲に濃い混合気を生成する。そのため、微量のパイロット噴射であっても、燃料の着火性は向上する。一方、メイン噴射およびアフター噴射において、インジェクタ12はパイロット噴射よりも高い圧力の燃料を噴射する。そのため、燃料の燃焼によって高圧となった燃焼室18に微粒化された燃料が供給され、燃料の燃焼は均一化する。これにより、メイン噴射およびアフター噴射における騒音およびNOxの低減、ならびに排気に含まれるPMの低減が図られる。 (もっと読む)


【課題】高圧ポンプの非駆動時に高圧燃料通路が低圧燃料通路と連通されて高圧燃料通路における燃料圧力が低下しているときに高圧燃料通路内の燃料圧力を精度良く求めることのできる内燃機関の制御装置及び制御方法を提供する。
【解決手段】内燃機関は、低圧燃料通路から導入される燃料を高圧ポンプにより昇圧するとともに高圧燃料通路を通じて圧送して燃料噴射弁に供給する。また、高圧ポンプの非駆動時には高圧燃料通路と低圧燃料通路とが連通状態とされる。電子制御装置は、高圧センサにより検出される高圧燃料通路内の燃料圧力に基づき燃料噴射制御を行なう。また、低圧燃料通路内の燃料圧力を検出する低圧センサを備えている。そして、高圧ポンプの非駆動時には高圧センサの出力値Vhを低圧センサの出力値Vlに基づき補正して高圧燃料通路内の燃料圧力とする。 (もっと読む)


【課題】高圧燃料ポンプから燃料タンクへの燃料の逆流を抑制する。
【解決手段】エンジン10には、燃料タンク200から筒内噴射用インジェクタ110に燃料を供給するための高圧燃料ポンプ150と、燃料タンク200と高圧燃料ポンプ150とを接続する低圧供給パイプ500とが設けられる。さらに、エンジン10は、高圧燃料ポンプ150から燃料タンク200に燃料を戻すリターンパイプ600と、リターンパイプ600における燃料の流れを制御する電磁バルブ602とが設けられる。エンジン10が停止した後、燃料の温度が、電磁バルブ602を閉じた状態において燃料が高圧燃料ポンプ150から燃料タンク200に向けて低圧供給パイプ500内を逆流する温度であると、電磁バルブ602が開かれる。 (もっと読む)


【課題】電磁弁のコイルのインダクタンスや電気抵抗に温度ばらつきや個体ばらつきなどがあっても、開弁に必要な一定のエネルギーをコイルに供給できるようにする。
【解決手段】放電用のコンデンサC10は、昇圧回路50により規定電圧に充電される。気筒♯1のインジェクタ101のコイル101aへの放電開始タイミングでマイコン130からの駆動信号IJT1がHレベルになると、放電用トランジスタT12及び気筒選択トランジスタT10が共にオンしてコンデンサC10からコイル101aへの放電が開始される。積分器33は、電流検出抵抗R10を流れる電流の積分によりコンデンサC10からの放出電荷Qmを算出し、放出電荷Qmが放出電荷閾値Qoに到達すると、比較器35の出力がLレベル、AND回路39の出力がLレベルとなって、放電用トランジスタT12がオフされ、コンデンサC10からコイル101aへの放電が停止される。 (もっと読む)


【課題】電磁弁のコイルのインダクタンスに温度ばらつきや個体ばらつきなどがあっても、その影響を受けることなく常に一定の開弁タイミングで開弁できるようにする。
【解決手段】放電用のコンデンサC10は、その充電電圧が目標DC−DC電圧Vtとなるように昇圧回路50により充電される。この目標DC−DC電圧Vtはマイコン130により設定される。コンデンサC10から気筒♯1のコイル101aへの放電が行われた際、マイコン130は、その放電期間に実際にコンデンサC10から放出された実放出エネルギーEnを算出し、基準エネルギーErと比較する。そして、EnとErが一致していない場合は、その両者の差に基づき、当該気筒♯1のコイル101aに対する次回以降の放電期間ではEn=Erとなるように目標DC−DC電圧Vtを再設定する。 (もっと読む)


【課題】高圧燃料ポンプの吸入弁の故障診断において、燃圧の脈動幅,燃圧センサの出力信号のノイズ等により瞬間的に燃圧が目標燃圧よりも下回る場合、または、燃圧が変化(低下)するまでの応答遅れが発生する場合において、診断精度が低下する。
【解決手段】故障診断の実行許可の判定成立経過時間と、エンジンの状態に基づいて演算する故障診断しきい値により、高圧燃料ポンプの吸入弁の故障診断を行う。 (もっと読む)


【課題】スモークの発生を抑制可能な内燃機関の燃料噴射制御装置を提供する。
【解決手段】気筒2内に燃料を直接噴射する燃料噴射弁9を備えた内燃機関1に適用され、気筒2内への燃料噴射として、主噴射と、主噴射の後に行われるアフター噴射とが1サイクル中に実行されるように燃料噴射弁9の動作を制御可能な燃料噴射制御装置において、主噴射で噴射された燃料の火炎の位置を推定し、アフター噴射で噴射される燃料が推定した火炎の位置に到達しないようにアフター噴射時における燃料噴射弁9の噴射率を変更する。 (もっと読む)


1 - 20 / 467