説明

Fターム[3G384EA05]の内容

内燃機関の複合的制御 (199,785) | 演算処理A(制御方式) (7,004) | 帰還制御 (4,095) | 制御定数の変更 (435) | 比例,微分定数 (96)

Fターム[3G384EA05]に分類される特許

1 - 20 / 96


【課題】噴射率波形の算出精度向上を図った燃料噴射状態推定装置を提供する。
【解決手段】コモンレール(蓄圧容器)で蓄圧した燃料を噴射する燃料噴射弁と、コモンレールの吐出口から燃料噴射弁の噴孔に至るまでの燃料通路内の燃料圧力を検出する燃圧センサと、を備えた燃料噴射システムに適用されることを前提とする。そして、燃圧センサの検出値に基づき、噴射に伴い生じた燃料圧力の変化を表した燃圧波形を検出する燃圧波形検出手段と、検出した燃圧波形に基づき、噴射率の変化を表した噴射率波形を算出する噴射率波形算出手段と、を備える。そして、前記噴射率波形算出手段は、前記噴射率波形のうち噴射開始に伴い噴射率が上昇していく部分である上昇波形部分(R1からRyの部分)を、その上昇速度が途中から遅くなる形状(屈曲点Rxを有する形状)に算出する。 (もっと読む)


【課題】 内燃機関の燃料供給を停止したときに取得される酸素センサの出力値を用いて、酸素センサの出力特性と酸素濃度との関係を精度良く較正可能な酸素センサ制御装置を提供する。
【解決手段】CPU2は燃料断が実行されたとき、所定間隔毎に取得される酸素センサ20の現在の出力対応値(濃度対応値)Iprが所定の第1範囲R1の範囲内にあるか否かを判断する。現在の出力対応値Iprが第1範囲R1の範囲内にあると判断された場合、現在の出力対応値のデジタルフィルタ値と、前回に第1範囲R1の範囲内にあると判断された前回の出力対応値のデジタルフィルタ値との変化量(差分値)が許容量内にあるか否かを判断する。そして、順次許容量内にあると判断された出力対応値Iprをもとに平均出力値Ipavを算出し、平均出力値Ipavと予め設定した基準出力値とを用いることで、酸素センサ20の実出力値Ipを補正するための補正係数を求める。 (もっと読む)


【課題】 クラッチ締結動作中において、運転者が意図しない機関出力制御が行われること、及び機関回転数の吹け上がりを適切に防止する。
【解決手段】 車両の発進時においてエンジン回転数NEが低下すると、クラッチ締結フィードバック制御が開始される。アクセルペダルが踏み込まれ、かつエンジン回転数NEが目標回転数NOBJ以下であるときは、フィードバック制御の比例項CLFBP、積分項CLFBI、及び微分項CLFBDが算出され、これらを加算することによりクラッチ締結フィードバック制御開度THCLFBが算出される。エンジン回転数NEが目標回転数NOBJを超えるとクラッチ締結フィードバック制御開度THCLFBが前回値THCLFBBに維持される。 (もっと読む)


【課題】コモンレールへの燃料の圧送量の算出精度を向上させる技術を提供する。
【解決手段】本燃料圧送システムは、燃料を蓄圧する蓄圧部60と、内部に圧力室53が形成されているシリンダと、シリンダ内において加圧方向への移動である加圧移動を行ない、加圧移動で圧力室53内の容積変化を生じさせることによって燃料を蓄圧部60へ圧送するプランジャ51と、蓄圧部60への燃料の圧送量を制御する制御部とを備える。制御部は、圧力室53の内周面とプランジャ51の外周面との間の隙間からの燃料の漏洩量を推定し、推定された漏洩量と、加圧移動時のプランジャ51のストロークに応じた圧力室53内の容積変化量と、を使用して圧送量を算出する圧送量算出部を有する。 (もっと読む)


【課題】コモンレールへの燃料の噴射量の制御性能を向上させる技術を提供する。
【解決手段】本燃料噴射システムは、蓄圧部60と、シリンダと、加圧移動で圧力室53内の容積変化を生じさせることによって燃料を蓄圧部へ圧送するプランジャ51と、蓄圧部に蓄圧された燃料を噴射するインジェクタを有する噴射部と、インジェクタからの燃料の噴射量を制御する制御部と、を備える。制御部は、インジェクタからの燃料の噴射期間中における蓄圧部への燃料の圧送量を算出する圧送量算出部と、噴射期間中における圧送量に基づいて噴射期間の補正量を決定する補正量決定部と、を有し、圧送量算出部は、圧力室53の内周面とプランジャ51の外周面との間の隙間からの燃料の漏洩量を推定し、推定された漏洩量と、加圧移動時のプランジャ51のストロークに応じた圧力室53内の容積変化量と、を使用して圧送量を算出する。 (もっと読む)


【課題】アイドルストップ期間中のスロットル動作応答を迅速にして、エンジンの再始動時間を短縮する。
【解決手段】エンジン冷却水温、車速、ブレーキ情報等を入力し、ISSの実施判定を行うISS判定手段5と、ISS制御期間中の目標開度を設定する目標開度設定手段6から成るISS制御部3、ISS制御期間中は、スロットル開度フィードバック制御演算で用いられる比例ゲインをISS制御期間中以外の比例ゲインより大きい値に補正する比例ゲイン補正係数演算手段9と、補正された比例ゲインを含めた制御ゲインを用いて目標開度と実開度の開度偏差に基づきスロットル開度フィードバック制御演算を行うスロットル開度フィードバック制御手段7と、スロットル開度フィードバック制御手段7から出力される操作量に比例した電圧をモータ20へ出力するPWM駆動手段8から成るスロットル制御部4を備えたエンジンの制御装置。 (もっと読む)


【課題】船舶の経年変化に合わせた効率のよい主機の運転を行う。
【解決手段】船体、主機、プロペラを含む制御対象10をシミュレートするオブザーバ12を設ける。主機を制御するための制御部11からのガバナ指令uをオブザーバ12の入力とする。主機の実回転数Neをオブザーバ12にフィードバックする。オブザーバ12において推定される経年劣化前の船速Vmoをメモリ13に保存する。経年劣化後にオブザーバ12で推定される船速Vmと経年劣化前の船速Vmoの差に基づいて制御パラメータを補正する。 (もっと読む)


【課題】 燃料セーブモードと通常モードとを効率よく切り換えて、燃料効率を向上させながら操船性を維持する。
【解決手段】 コントローラ4には、設定回転数と、実回転数とが、入力され、通常モードにおいて、設定回転数と実回転数との差から舶用機関2の燃料供給手段への出力値をPID制御器12が算出する。PID制御器12は、通常モードに比べて単位時間当たりの出力値の変更幅を小さくする燃料セーブモードも有している。設定回転数及び実回転数の変動を監視する検出部20、22、24、26、28を備え、燃料セーブモードにおいて、設定回転数または実回転数が所定範囲を超えたとき、これら検出部の出力によってPID制御部12が通常モードに切り換えられる。 (もっと読む)


【課題】 燃料セーブモードと通常モードとを効率よく切り換えて、燃料効率を向上させながら操船性を維持する。
【解決手段】 コントローラ4には、設定回転数と、実回転数とが、入力され、通常モードにおいて、設定回転数と実回転数との差から舶用機関2の燃料供給手段への出力値をPID制御器12が算出する。PID制御器12は、通常モードに比べて単位時間当たりの出力値の変更幅を小さくする燃料セーブモードも有している。設定回転数及び実回転数の変動を監視する検出部20、22、24、26、28を備え、燃料セーブモードにおいて、設定回転数または実回転数が所定範囲を超えたとき、これら検出部の出力によってPID制御部12が通常モードに切り換えられる。 (もっと読む)


【課題】排ガス流量が減少した後に、排ガス流量が少ない状態が継続する場合においても、DPF入口温度を目標温度に安定的に制御できる内燃機関の排ガス浄化装置を提供することを目的とする。
【解決手段】フィードフォワード制御手段47と、DPF7の目標温度に対する補正操作量を指令するフィードバック制御手段49と、フィードフォワード手段47からの基本操作量とフィードバック制御手段49からの補正操作量とを加算して操作量を算出する操作量加算手段51とを有し、排ガス流量が急減少したときにフィードバック制御手段49を構成する積分器の積分値をリセットする積分器リセット手段55、または排ガス流量に基づく信号によってフィードフォワード制御手段の基本操作量を算出する基本操作量算出手段の少なくとも一方を備えることを特徴とする。 (もっと読む)


【課題】学習値が収束しているか否かを迅速且つ精度良く判定し、エミッションを改善する。
【解決手段】触媒の下流に配置された下流側空燃比センサの出力値Voxsと下流側目標値Voxsrefとの偏差DVoxslowに比例ゲインKpを乗じた値を比例項Kp・DVoxslowとして算出する(1035)。更に、偏差DVoxslowに所定の調整ゲインKを乗じた値を積算することにより時間積分値SDVoxslowを算出し(1030)、時間積分値SDVoxslowに比例した値を積分項Ki・SDVoxslowとして算出する(1035)。積分項Ki・SDVoxslowをサブFB学習値KSFBgとして取得する(1055)。比例ゲインKpを、サブFB学習値KSFBgが収束したと判定された後は小さい値に設定するとともに、調整ゲインKを、サブFB学習値KSFBgが収束したと判定された後は小さい値に設定する(1025)。 (もっと読む)


【課題】分布定数系の微分方程式を少ない演算量で解けるようにする。
【解決手段】全ての計算時刻について値が与えられる第1の変数と、初期値のみが与えられる第2の変数とで定義される被積分関数に関する積分演算をコンピュータで実行し、各計算時刻で使用する前記第2の変数の値を算出するために、以下の処理を実行する。まず、被積分関数を第2の変数について偏微分して求めた偏導関数を記憶装置から読み出す。各計算時刻では、初期値又は直前回の計算時刻に算出された第2の変数の値と、現計算時刻に与えられる第1の変数の値を、被積分関数と偏導関数にそれぞれ代入して現計算時刻における被積分関数の値と偏導関数の値をそれぞれ算出する。この後、算出された被積分関数の値を初期値とし、かつ、当該被積分関数の値に偏導関数の値を乗算して算出された値を傾きとする指数関数を用い、次回計算時刻に使用する第2の変数の値を算出する。 (もっと読む)


【課題】ガソリンとアルコールとの混合燃料を使用する内燃機関において、低温時の始動性を向上させることのできる内燃機関の制御装置を提供する。
【解決手段】内燃機関10が十分に暖機されている期間中の温暖な冷却水(温水)を保温した状態で貯蔵する蓄熱タンク32と、蓄熱タンク32内に貯蔵されている温水を内燃機関10の内部に形成された冷媒通路内へ供給する蓄熱用ウォータポンプ30と、混合燃料のアルコール濃度を取得する燃料性状センサ44と、内燃機関10の冷間始動要求が出された場合に、蓄熱用ウォータポンプ30を駆動して始動前の内燃機関10を暖機するプレヒート処理を実行する制御手段と、を備え、制御手段は、アルコール濃度が高いほど温水の供給流量が多量となるように設定する。また、プレヒート処理の初期期間は温水の供給流量を多量に設定し、その後の期間は初期期間よりも少量に設定する。 (もっと読む)


【課題】火種自己着火燃焼モードにおいて、内部EGRガス量、圧縮行程噴射の噴射時期および点火プラグの点火時期を適切に制御することができ、それにより、良好な燃焼状態を得ることができる内燃機関の制御装置を提供する。
【解決手段】制御装置では、内部EGRガス量、圧縮行程噴射の噴射時期および点火時期をそれぞれ制御するためのEGR制御パラメータ、噴射時期制御パラメータおよび点火時期制御パラメータが、検出された燃焼状態パラメータを設定された目標値に収束させるように、算出されるとともに、噴射時期制御パラメータおよび点火時期制御パラメータの少なくとも一方が制限される。また、この制限中、この少なくとも一方と、それに対応する制限値との偏差を表す偏差パラメータDFBZ_tiにさらに応じて、対応する噴射時期制御用および点火時期制御用の積分項I_tiの少なくとも一方が算出される。 (もっと読む)


【課題】船舶の経年変化に合わせた効率のよい主機の運転を行う。
【解決手段】船体、主機、プロペラを含む制御対象10をシミュレートするオブザーバ12を設ける。主機を制御するための制御部11からのガバナ指令uをオブザーバ12の入力とする。主機の実回転数Neをオブザーバ12にフィードバックする。オブザーバ12において推定される経年劣化前の船速Vmoをメモリ13に保存する。経年劣化後にオブザーバ12で推定される船速Vmと経年劣化前の船速Vmoの差に基づいて制御パラメータを補正する。 (もっと読む)


【課題】負荷変動に操作量を追従させながらも操作量の変動を抑制し、エンジン出力の変動を抑えて燃費の向上を図る。
【解決手段】目標回転数Noとエンジン10の実回転数Neの偏差をPID演算部11に入力する。PID演算部11において、I演算部13の出力に対してのみ上限リミッタ15を設ける。P演算部12、上限リミッタ15、D演算部14の出力を足し合わせ上限リミッタ16に出力する。上限リミッタ16からの出力されるフューエルインデックスFIeをエンジン10の操作端に出力し、燃料供給量を制御する。 (もっと読む)


【課題】酸素センサの出力のリッチ反転及びリーン反転のいずれか一方に応答遅れが生じている場合にこれを的確に把握することができる。
【解決手段】内燃機関1の排気浄化装置は、排気通路13に排気上流側から順に酸素吸蔵触媒15、酸素センサ24を備える。電子制御装置2は、触媒15に吸蔵されている酸素量が最大であると推定されるときに強制リッチ化制御を実行し、同制御の開始から酸素センサ24の出力がリッチ反転するまでの期間に最大酸素放出量を同期間に基づき推定する。触媒15に吸蔵されている酸素量が最小であると推定されるときに強制リーン化制御を実行し、同制御の開始から酸素センサ24の出力がリーン反転するまでの期間に最大酸素吸蔵量を同期間に基づき推定する。そして、最大酸素放出量と最大酸素吸蔵量との偏差の絶対値が所定値以上である場合に上記応答遅れが生じていると判定する。 (もっと読む)


【課題】多気筒内燃機関において、気筒間空燃比インバランスを精度高く判定すること。
【解決手段】複数の燃焼室21と、これら燃焼室にそれぞれ対応して配置された燃料噴射弁25と、排気浄化触媒43と、排気浄化触媒よりも上流に配置された上流側空燃比センサ55と、排気浄化触媒よりも下流に配置された下流側空燃比センサ56とを備え、下流側空燃比センサに異常が生じているか否かを判定すべきときに各燃焼室に形成される混合気の空燃比を理論空燃比よりもリッチな空燃比に制御する下流側空燃比センサ異常判定用リッチ空燃比制御が実行される。気筒間空燃比インバランス判定装置は、下流側空燃比センサ異常判定用リッチ空燃比制御が実行されているときに上流側空燃比センサの出力に基づいて各燃焼室に形成される混合気の空燃比を推定して該推定された混合気の空燃比間にずれが生じているか否かを判定する気筒間空燃比インバランス判定を実行する。 (もっと読む)


【課題】可変バルブやターボ過給機を搭載した内燃機関においても、過渡時の吸気管温度挙動を精度良く推定できる内燃機関の制御装置を提供する。
【解決手段】吸気管に流入するガスの流量(dGafs/dt)と、吸気管から流出するガスの流量(dGcyl/dt)と、吸気管圧力Pinと、吸気管圧力の時間変化率(dPin/dt)に基づき、吸気管温度の過渡挙動を推定する。そして、その推定した吸気管温度の過渡挙動に基づいて過渡期間におけるノック制御を行う。 (もっと読む)


【課題】速やかに且つ安定して内燃機関の被制御量を目標値に一致させることのできる制御システムを提供する。
【解決手段】内燃機関における物理現象の逆モデル(逆内燃機関モデル)にフィードバック制御を組み合わせる。詳しくは、被制御量の目標値から変換されたシステム入力信号と、被制御量の計測値から変換されたシステム出力信号との差分信号をPI制御器に入力し、PI制御器の出力信号をローパスフィルタで処理する。そして、ローパスフィルタの出力信号を逆内燃機関モデルによってアクチュエータの操作信号に変換する。ローパスフィルタは、システム入力信号に対するシステム出力信号のナイキスト周波数でのゲインが1以下になるように設計する。 (もっと読む)


1 - 20 / 96