説明

Fターム[3J051EC03]の内容

摩擦伝動装置 (8,496) | 構成要素自体の構造又は支持・取付け (443) | 中間伝動部材 (154)

Fターム[3J051EC03]に分類される特許

1 - 20 / 154


【課題】中間ローラを回転自在に支持する揺動フレームを構成する1対の支持腕の剛性を向上させられる構造を実現する。
【解決手段】前記中間ローラ19aを支持する為の自転軸を、ボルト49とする。前記両支持腕部36a、36bの先端部に円形の通孔とねじ孔とを、互いに同心に設ける。このうちの通孔に前記ボルト49の中間部を構成する円柱部を挿通すると共に、前記ねじ孔にこのボルト49の先端部を構成する雄ねじ部を螺合し更に締め付ける。そして、前記両支持腕部36a、36bの先端部同士を結合して、これら両支持腕部36a、36bの先端部同士の間隔が拡がるのを防止する。 (もっと読む)


【課題】部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現する。
【解決手段】トラニオン10dの支持梁部27aに対してスラスト玉軸受29aを構成する外輪30aを、揺動変位可能に支持する。この外輪30aに結合固定した被検出ブラケット35に設けた被検出面38の変位をセンサ42により測定し、前記外輪30aの変位量を測定可能とする。そして、このセンサ42の測定信号により、変速比に関するフィードバック制御を行う。前記トラニオン10dと前記外輪30aとの間に存在する隙間の影響を受けずに、パワーローラ9aの変位を測定できるので、変速動作の安定化を図れる。 (もっと読む)


【課題】作用する荷重の状態によらず、外輪(パワーローラ)とトラニオンとの間の相対的な位置ずれを抑制でき、安定した変速比制御を行なうことができるトロイダル型無段変速機を提供する。
【解決手段】このトロイダル型無段変速機は、トラニオン15Aに設けられたテーパ状の第1の溝212と、この第1の溝212に係合されるピン210と、外輪28Aに設けられた第2の溝230と、この第2の溝230に配され且つピン210に対してこれを第1の溝212に対して押し付ける付勢力を付与する付勢部材200とから成る支承部300を有し、該支承部300は、ピン210と第1の溝212との係合部で、パワーローラ11に加わるトルクを支承可能である。 (もっと読む)


【課題】作用する荷重の状態によらず、トラニオンの軸方向に関して、外輪(パワーローラ)とトラニオンとの間の相対的な位置ずれをなくすことができ、安定した変速比制御を行なうことができるトロイダル型無段変速機およびその部品の加工方法を提供する。
【解決手段】このトロイダル型無段変速機において、互いに対向するトラニオン15Aの内端面15aと外輪28Aの外端面28aとにはそれぞれ、トラニオン15Aの軸方向の両側に、トラニオン15Aの内端面15aと外輪28Aの外端面28aとを凹凸嵌合させるように互いに当接してトラニオン15Aと外輪28Aとの間の相対的な軸方向移動を規制する当接支持面15b,28bが設けられる。 (もっと読む)


【課題】トラニオンの左右の最大許容傾転角度が等しくない場合であってもストッパ部材およびこれに当接する当接部を1種類用意するだけで傾転角度規制構造を実現できるトロイダル型無段変速機を提供する。
【解決手段】このトロイダル型無段変速機は、複数のトラニオンの傾転角度を機械的に規制するための傾転角度規制手段を備える。該傾転角度規制手段は、トラニオン15とともに傾転することなくトラニオン15の傾転を規制するための、全てのトラニオン15に共通の1つのストッパ部材71A(傾転角度を規制する2つの当接面71a’,71b’を有する)を備える。各トラニオン15にはそれぞれ、トラニオン15とともに傾転するとともに、ストッパ部材71Aに当接してトラニオン15の傾転を停止させるための、全てのトラニオン15に共通する同一の形状を有する当接部76が設けられる。 (もっと読む)


【課題】摩擦伝動変速機において、動力を伝達するローラ対を切り替える変速時における引き込みショックを低減可能にした変速制御装置を提案する。
【解決手段】S1の1速状態において、1→2変速開始判定がなされると(S2)、S3で偏心軸をO2周りに変速指令とは逆のB1方向へ所定量だけ回転させ、軸受35をカム面34a上で変速開始直前位置から更に図の右方へ駆け上がらせ、ローラ軸間距離を小さくする。次にS4で、保持力B2により軸受35を、S3でのカム面駆け上がり位置に保つ。この状態で、S5において、偏心軸をO2周りに2速位置までB3方向へ回転させ、2速従動ローラ22を2速駆動ローラ12に接触させる。偏心軸の1→2変速回転中、S3での偏心軸の逆方向回転によるローラ軸間距離の短縮分だけ、ローラ22,12間の接触力が変速開始直前値よりも増大され、引き込みショックを防止し得る。 (もっと読む)


【課題】無段変速方法において,従来の摩擦力を使った変速方法ではなく歯車を噛合わせる簡単な構造の機械式連続無段変速方法を提案する。
【解決手段】相似形の十分に薄い歯車を回転中心を合わせ段差なく連続的に重ね合わせた入力歯車,両面歯車,出力歯車を向かい合わせ,間に大きさが変化しない中間歯車を噛合わせて挟み,中間歯車の可動歯を揺動させ,中間歯車の可動歯と入力歯車,両面歯車,出力歯車との噛合い径を変化させることで連続無段変速を可能とした。 (もっと読む)


【課題】入力軸あるいは出力軸から入力されるトルクの大きさに追従して双方向のトルク伝達を行うことができると共に、トルク伝達不要時、クラッチ機構を用いないでニュートラル状態にすることができる車両用無段変速機を提供すること。
【解決手段】トルク伝達部材(パワーローラ部材)60を平行隙間Sの中心線Soに沿って往復動させ、両円錐ローラ40,50における接触径を変えることで無段階に変速する変速手段(ローラ軸傾斜変速機構)70と、入力軸20又は出力軸30からの入力トルクの大きさに比例し、且つ、平行隙間Sの間隔を狭める方向の軸力により、入力側円錐ローラ40と出力側円錐ローラ50に対するトルク伝達部材60の接触力を発生する接触力発生手段(ローディングカム機構)80と、平行隙間Sの間隔を広げる方向の軸力により、入力側円錐ローラ40と出力側円錐ローラ50に対するトルク伝達部材60の接触力を解除する接触力解除手段(付勢機構)90と、を備える。 (もっと読む)


【課題】高精度な加工機を用いることなく安価に、パワーローラ・トラニオンアセンブリ間での軸間偏心量のばらつきを小さく抑えることができるトロイダル型無段変速機のトラニオン加工方法および該方法によって形成されるトラニオンを提供する。
【解決手段】このトラニオン加工方法は、所定の素材からトラニオンを切削する切削工程と、偏心軸16の両端面にそれぞれ、偏心軸16の軸心O”上に位置して第1のセンタ穴102を形成する偏心軸センタ穴形成工程と、枢軸14の両端面にそれぞれ、枢軸14の軸心O’上に位置して第2のセンタ穴105を形成する枢軸センタ穴形成工程と、第1のセンタ穴102を支点として偏心軸16を両側から支持した状態で、偏心軸16を研削加工する偏心軸研削工程と、第2のセンタ穴105を支点として枢軸14を両側から支持した状態で、枢軸14を研削加工する枢軸研削工程とを含む。 (もっと読む)


【課題】部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現する。
【解決手段】パワーローラ6aを回転自在に支持する為のスラスト玉軸受13aを構成する外輪16bを、トラニオン7bの支持梁部23aに対して揺動変位を可能に支持する。この支持梁部23aに支持固定したアンカピン27と、前記外輪16bの外側面に形成した凹溝28、28とを係合させて、運転時にこの外輪16bに加わる力2Ftを支承する。この力2Ftを支承する為の構造の加工が容易になり、前記課題を解決できる。 (もっと読む)


【課題】電動モータの回転を減速機で減速して出力する減速機付きモータの小型化、コンパクト化を図ることである。
【解決手段】電動モータAの回転軸13の回転を減速して出力する減速機構が、ハウジング1と、そのハウジング1の内径面に支持された内歯車21と、電動モータAの回転軸13の回転が入力されて内歯車21内で回転可能な偏心円板23と、その偏心円板23の回転軸心と同軸上に配置され、内歯車21と偏心円板23との間で回転可能なケージ27を軸端部に有する出力軸25と、ケージ27に保持されて内歯車21の内歯22に噛合し、その内歯22の歯数より少数の転動体32とで形成される減速機Bとされる。電動モータAの回転軸13上に偏心円板23を設けて軸方向長さのコンパクト化を図る。 (もっと読む)


【課題】隙間を伴うことなくトラクション力を受けるトラニオン支持構造を備え、それにより変速時の衝撃等を抑えることができるトロイダル型無段変速機を提供する。
【解決手段】このトロイダル型無段変速機では、外輪28にこれと別体で組み付けられる軸部23Aの先端凸部23Aaがトラニオン15の中央部内側面に形成される凹状溝16bに係合することにより、パワーローラ11から外輪28に加わるトラクション力が凹状溝16bで受けられるようになっている。 (もっと読む)


【課題】四節リンク型無段変速機の偏心機構用ベアリングの脱落を防止する。
【解決手段】無段変速機1は、固定ディスク5と揺動ディスク6とを有する偏心機構4を複数備える。揺動ディスク6には、入力軸2及び固定ディスク5を受け入れる受入孔6aが設けられている。受入孔6aは、軸方向中央に位置する小径孔6cと、小径孔6cを軸方向で挟むように配置された大径孔6dとで構成され、小径孔6cと大径孔6dとの間で段差部6eが形成される。固定ディスク5と大径孔6dとの間には、偏心機構用ベアリング21が配置される。ベアリング21は、複数の転動体22を保持する保持器23と、外輪24とを備える。外輪24には、段差部6eと固定ディスク5との間へ張り出す張出部24aが設けられる。 (もっと読む)


【課題】パワーローラの回転による潤滑油の飛散を防止しつつ、パワーローラのトラクション面およびベアリング部への潤滑油供給路の構造を簡素化できる、冷却性能が高い低コストなトロイダル型無段変速機を提供する。
【解決手段】本発明の一実施形態に係るトロイダル型無段変速機では、トラニオン15から潤滑油ガイドカバー300Aに至る潤滑油供給路29a、400,407,408を有し、潤滑油ガイドカバー300Aから直接パワーローラ11のトラクション面(周面11a)に潤滑油を吹き付けて潤滑油を供給するので、潤滑油が潤滑油ガイドカバー300Aの切欠部321から飛散するのを抑制し、効率的にパワーローラ11を冷却することができる。 (もっと読む)


【課題】コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現する。
【解決手段】パワーローラを回転自在に支持する為のスラスト玉軸受を構成する外輪16bを、トラニオン7bの支持梁部23に対して揺動変位を可能に支持する。前記トラニオン7bと前記外輪16bとの間であって、支持梁部23の両端側に、1対のくさび部材27、27を設けている。このくさび部材27、27には、前記トラニオン7bの支持梁部23の円筒状凸面22と係合する、外輪と同様の部分円筒面状の凹部28と、外輪16bの径方向端面に設けた傾斜面29と当接させる、前記トラニオン7bの支持梁部23の中心側からその両端側に向かうにつれて、支持梁部23から離れるように傾斜した傾斜面30と、前記トラニオン7bの段差面26aと当接する当接面31が設けられている。 (もっと読む)


【課題】外輪8aの凹部9aとトラニオン1aの支持梁部5aの円筒状凸面4aとの当接面に、潤滑油による油膜を形成し易い様にして、これら凹部5aと円筒状凸面4aとの揺動(摺接)を円滑に行える構造を実現する。
【解決手段】外輪8aの凹部9aとトラニオン1aの支持梁部5aの円筒状凸面4aに、ディンプル加工と微細溝加工とのうち少なくとも一方の加工を施す事により多数の微小凹部を設ける。 (もっと読む)


【課題】ローディングカム装置の軸方向に関する厚さの変化に伴う中間ローラ19、19の変位を円滑に行わせる事ができて、優れた伝達効率を得られる構造を実現する。
【解決手段】前記各中間ローラ19、19の自転軸の端部を回転自在に支持した揺動フレーム35の基端部を支持フレーム32に対し、揺動変位自在に支持する。前記ローディングカム装置の作用に伴って前記各中間ローラ19、19を、前記支持フレーム32の径方向に変位させる。そして、各トラクション部の面圧を均一にして、前記課題を解決する。 (もっと読む)


【課題】ローディングカム装置7a、7aの軸方向に関する厚さの変化に伴う中間ローラ19、19の変位を円滑に行わせる事ができて、優れた伝達効率を得られる構造を実現する。
【解決手段】前記各中間ローラ19、19の自転軸20、20の端部を回転自在に支持する為の支持フレーム32に固定したガイドブロック34、34に、太陽ローラ4a及び環状ローラ5aの径方向に長いガイド長孔35、35を設ける。そして、前記各自転軸20、20の端部に内輪を外嵌固定した玉軸受36、36の外輪を、前記各ガイド長孔35、35に、前記径方向に関する変位を可能に係合させる。 (もっと読む)


【課題】小型・軽量化、並びに、起動時に於ける各トラクション部の面圧確保の効率化を図り易く、しかも、耐久性を十分に確保し易いローディングカム装置を備えた構造を実現する。
【解決手段】各中間ローラ19、19を、それぞれがこれら各中間ローラ19、19の軸方向片半部を構成する、1対ずつの中間ローラ素子21、21により構成する。又、前記各中間ローラ19、19毎に1対ずつの中間ローラ素子21、21同士の間に、皿ばね22、22等の弾性部材を挟持する。そして、前記各中間ローラ19、19に軸方向寸法を増大させる方向の弾力を付与し、太陽ローラ4a、環状ローラ5a、これら各中間ローラ19、19の周面同士の転がり接触部の面圧を確保する為の予圧を付与する。 (もっと読む)


【課題】部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現する。
【解決手段】各トラニオン7b、7b毎に1対ずつ設けた各段差面26、26同士の間隔Dを、各外輪16b、16bの外径d0よりも大きくする。これら各段差面26、26とこれら各外輪16b、16bの外周面との間に、押圧駒27、27とアンカ駒28、28とを設置する。このうちの押圧駒27、27を、圧縮コイルばね37、37により、前記各外輪16b、16bに向けて押圧する。この押圧方向と、運転時に加わる力2Ftの作用方向とを一致させて、各パワーローラ6a、6aが支持梁部23、23の軸方向に変位するのを防止し、前記課題を解決する。 (もっと読む)


1 - 20 / 154