説明

Fターム[3J552MA13]の内容

伝動装置(歯車、巻掛け、摩擦)の制御 (81,513) | 伝動装置の形式 (11,172) | 発進装置 (3,282) | メインクラッチ (1,118)

Fターム[3J552MA13]の下位に属するFターム

Fターム[3J552MA13]に分類される特許

161 - 180 / 1,106


【課題】車両負荷が所定値以上である場合における、第2摩擦締結要素の過熱を防止しながら、内燃機関の暖機を適切に行なうことができるハイブリッド車両の制御装置を提供すること。
【解決手段】車両負荷を検出する車両負荷検出手段64と、第2摩擦締結要素25の温度を検出する温度検出手段63と、車両負荷検出手段64により検出された車両負荷が所定値以上である場合に、内燃機関10を所定回転数で作動させたまま第1摩擦締結要素15を解放し、モータジェネレータ20を所定回転数よりも低い回転数として第2摩擦締結要素25をスリップ締結するモータスリップ走行制御を行う走行制御手段60と、を備え、走行制御手段60は、内燃機関10からの暖機要求がされている場合において、第2摩擦締結要素25の温度が所定温度未満である場合には、モータスリップ走行制御を禁止する。 (もっと読む)


【課題】 運転性を向上可能な車両の制御装置を提供すること。
【解決手段】 アクセルヒルホールド状態と判定されたときは、車輪に機械的制動トルクを付与すると共に、駆動源と駆動輪の間のクラッチの締結トルクの出力を減少させる締結要素保護制御を実行する。このとき、機械的制動トルクの増加勾配を、路面勾配が大きい程大きな増加勾配に設定することとした。 (もっと読む)


【課題】惰性走行中の内燃機関の始動にともなうショック又は車両の押し出し感を抑制する。
【解決手段】内燃機関10と、電動機20と、内燃機関の出力軸及び電動機の出力軸に直接的又は間接的に接続された駆動車輪54と、電動機の出力軸に接続された自動変速機40とを備え、運転操作と走行環境に応じてドライブモードをスポーツ走行モード又は非スポーツ走行モードに設定するハイブリッド車両に対し、制御信号を出力する制御装置であって、車両がEV走行モード及び惰性走行中に、ドライブモードがスポーツ走行モードに設定されたことを検出し、かつ内燃機関の始動要求を検出した場合に、スポーツ走行用変速パターンへの変更禁止を指令する制御手段60を備える。 (もっと読む)


【課題】第二係合装置の過熱を抑制することができると共に、第二係合装置のスリップ係合状態から完全係合状態への遷移時に、トルク段差によりショックが発生するのを抑制することができる制御装置の実現。
【解決手段】内燃機関11に駆動連結される入力部材Iと車輪15に駆動連結される出力部材Oとを結ぶ動力伝達経路に、第一係合装置CS、回転電機12、第二係合装置C1、の順に設けられた車両用駆動装置1の制御装置3。制御装置3は、第一係合装置CS及び第二係合装置C1の双方のスリップ係合状態で車両6を加速させる特定スリップ加速制御部46と、特定スリップ加速制御の終了時に、第一係合装置CSのトルク容量、第二係合装置C1のトルク容量、発電トルク、が所定の均衡関係となるように、第一係合装置CS、第二係合装置C1、回転電機12を制御するトルク調整制御部47と、を備える。 (もっと読む)


【課題】摩擦ブレーキと回生ブレーキとを協調させて車両を制動する協調回生ブレーキが備えられた車両において、車両の減速中にショックが発生することを防止可能なオートマチックトランスミッション制御装置を提供する。
【解決手段】摩擦ブレーキと回生ブレーキとを協調させて車両を制動する協調回生ブレーキが備えられた車両のオートマチックトランスミッションを制御する装置であって、減速中にダウンシフトの開始タイミングになったか否か判定するダウンシフト判定部(S2)と、ダウンシフトの開始タイミングになったときは、通常のシフト時間で変速した場合に、モータージェネレーターのトルクの低下に合わせて摩擦ブレーキの制動力を上昇できるか否かを判定する摩擦制動上昇判定部(S5)と、上昇できないと判定されるときは、通常よりも長い時間をかけて変速するようにダウンシフトを開始するシフト制御部(S6)と、を備える。 (もっと読む)


【課題】伝達トルク容量が変更可能な摩擦要素が他の摩擦要素と重なって選定された場合に、ショック防止効果の高い伝達トルク容量の摩擦要素を選定できるハイブリッド車両の変速制御装置を提供すること。
【解決手段】制御手段(統合コントローラ10)は、エンジンの始動中にモータと駆動輪との間に設けられた複数の摩擦要素(CL2要素)のうちから自動変速機ATの各ギヤ変速時でのショック遮断が可能なものを選定するようになっている。 (もっと読む)


【課題】モータを駆動力として走行する車両における変速時のショックの発生を防止する。
【解決手段】本発明は、駆動源としてのモータと、モータと駆動輪との間に介装される変速機と、モータから駆動輪までの動力伝達経路上に配置されるクラッチと、モータの駆動力によって走行中、クラッチの伝達トルク容量を低下させてクラッチを締結状態からスリップ締結状態へと移行させ、スリップ締結状態を保持するクラッチ制御手段と、クラッチ制御手段によってクラッチがスリップ締結状態に保持されている状態で変速機の変速が開始された時(S2)、クラッチの伝達トルク容量を増大させてクラッチを締結状態へと移行させる(S4、S7)変速時クラッチ制御手段と、を備える車両の制御装置である。 (もっと読む)


【課題】ECVTおよびアイドルスピードコントロール装置を備えた車両において、ドライバビリティを向上する。
【解決手段】自動二輪車1は、駆動輪としての後輪3と、エンジン10と、変速装置20と、遠心クラッチ25と、アイドルスピードコントロール装置9と、ECU7と、を備えている。変速装置20は、入力軸としてのクランク軸11と、出力軸22a1とを有する。遠心クラッチ25は、出力軸22a1と後輪3との間に配置されている。遠心クラッチ25は、出力軸22a1の回転速度に応じて断続される。アイドルスピードコントロール装置9は、エンジン10のアイドル回転速度を調節するアイドルスピードコントロールを行う。ECU7は、変速装置20の異常を検出し、変速装置20に異常が生じた際にアイドルスピードコントロールを抑制または停止させる。 (もっと読む)


【課題】回生制御を行っている場合のアップシフト時に制動力抜けを抑制する回生制御装置を提供する。
【解決手段】モータジェネレータと、モータジェネレータと駆動輪との間に配置される変速機とを備えた車両における回生制動を制御する回生制御装置であって、統合コントローラは、回生制御を実施しているかどうか判定し、変速機でアップシフトを行っているかどうか判定し、回生制御を実施し、かつ変速機でアップシフトを行っている場合に、イナーシャフェーズの解放側クラッチトルク容量を、回生制御を実施せずにアップシフトを行っている場合のイナーシャフェーズの解放側クラッチトルク容量よりも大きい値に設定する。 (もっと読む)


【課題】動力伝達モードを切替可能なハイブリッド車両の運転効率を高める。
【解決手段】ハイブリッド車両の制御装置(100)は、内燃機関(200)及び電動機(MG1)を含む動力要素と、駆動軸(500)と、動力伝達機構(300)と、クラッチ(710)とを備えたハイブリッド車両を制御する。ハイブリッド車両の制御装置は、アクセル開度を検出するアクセル開度検出手段(13)と、アクセル開度がゼロである場合にクラッチの解放制御を行うクラッチ制御手段(130)と、車速を検出する車速検出手段(14)と、車速が所定の閾値以上で解放制御が行われる場合に、動力循環が発生しているか否かを判定する判定手段(160)と、動力循環が発生していると判定された場合に、電動機の回転数を、動力循環が発生しない回転数へと変化させる電動機制御手段(170)とを備える。 (もっと読む)


【課題】トルクフェーズでのトルク低下ショックを変速機入力トルクの増大により軽減するに際し、トルクフェーズの開始を変速機入力トルクの増大に調時させる。
【解決手段】変速開始時t1より、解放側クラッチH&LR/Cを作動圧指令値Po_oに追従する実圧Poの低下で解放させ、締結側クラッチD/Cを作動圧指令値Pc_o(実線)に追従する実圧Pc(破線)の上昇で締結させる。H&LR/CおよびD/Cの掛け替えによる1→2アップシフト時のトルクフェーズで生ずるトルク低下をt3におけるモータトルクTmの増大で相殺して変速機出力トルクToを実線t1での値To1に保ち、変速ショックを軽減する。Pcがα1またはα2のようにずれてToがβ1またはβ2になるとき、Pc_oのプリチャージ圧をγ1またはγ2に補正し、α1またはα2が破線特性になるようにし、D/Cの締結開始をモータトルクTmの増大タイミングt3に一致させる。 (もっと読む)


【課題】エンジン停止制御時、差動許容機構を有さない直列接続駆動系でありながら、エンジン再始動時の排気浄化効率の維持と、車速低下の抑制と、燃費の向上と、を併せて達成すること。
【解決手段】駆動系に、エンジンEng、第1クラッチCL1、モータ/ジェネレータMG、第2クラッチCL2、左右タイヤLT,RTを備え、エンジンEngを停止させる際、第1クラッチCL1を締結状態でエンジンEngへの燃料噴射を継続したままでエンジン回転数を低下させ、エンジン回転数N1が所定回転数N2まで低下した段階でエンジンEngへの燃料噴射を停止する。このハイブリッド車両において、エンジン停止制御手段(図4,図5)は、モータ/ジェネレータMGによりエンジン回転数N1を低下させる際、自動変速機CVTをハイ側に変速させ、ハイ側への変速に制限がかかったとき、第2クラッチCL2をスリップ締結状態とする。 (もっと読む)


【課題】駆動力源の回転速度がアイドリング回転速度以上の状態で電動ポンプを駆動し得る自動変速機において、運転者の違和感を抑制しつつ、電動ポンプの発熱対策を行うこと。
【解決手段】自動変速機の制御装置であって、変速機構の必要油圧より機械式ポンプによって生成される油圧が小さい場合に、機械式ポンプと電動ポンプによって生成される油圧が必要油圧以上となるように、電動ポンプを駆動させる指示を出力する指示出力部と、指示出力部によって指示が出力された場合に、電動ポンプに関する予め決められた発熱条件が満たされるか否かを判断する判断部と、判断部が発熱条件は満たされたと判断した場合に、変速機構の変速比を、判断部による発熱条件の判断時と比較して高くする変速制御を行う変速制御部と、を備える。 (もっと読む)


【課題】出力部材の回転速度が比較的低い場合であっても、内燃機関始動制御の開始時における第二係合装置のスリップ開始判定を精度良く行うことができる制御装置の実現。
【解決手段】内燃機関11に駆動連結される入力部材Iと車輪15に駆動連結される出力部材Oとを結ぶ動力伝達経路上に、第一係合装置CS、回転電機12、第二係合装置C1、の順に設けられた車両用駆動装置1を制御対象とする制御装置3。回転電機12のトルクを車輪15に伝達しながら内燃機関11を始動させる内燃機関始動制御を実行可能に構成され、内燃機関始動制御を実行するために第二係合装置C1を完全係合状態からスリップ状態へ移行させるに際して、少なくとも低車速状態である場合に、ロータ12bの回転位置を検出する回転センサSe2の出力に基づく回転電機12の回転加速度の変化量がスリップ判定量以上となったときに第二係合装置C1がスリップを開始したと判定する。 (もっと読む)


【課題】自動変速機のアップシフトを運転者のアップシフト操作なしに実行する制御手段を備えた車両用自動変速機の変速制御装置において、自動変速機を正確にアップシフトすることができる車両用自動変速機の変速制御装置を提供する。
【解決手段】予め求められているタイヤジャダー発生時の周期T1における半周期T2のエンジン回転速度Neの差分をエンジン回転速度Neの変化勾配ΔNeとして算出することで、エンジン回転速度Neがその周期T1で変動しても、半周期T2の差分で算出される変化勾配ΔNeに基づいてエンジン回転速度Neの上昇を正確に判断することができる。したがって、変化勾配ΔNeに基づいて、正確かつ速やかに自動変速機16のアップシフトの可否を判断することが可能となり、アップシフトの遅れや不要なアップシフトの実行を防止することができる。 (もっと読む)


【課題】エンジンが停止中であっても、ギヤのアップロックを回避してギヤ駐車することが可能な自動変速装置を提供すること。
【解決手段】自動変速装置30にアップロックが発生した場合であって(S1)、エンジン10が停止中であっても(S2)、自動変速装置30の変速段を運転者がシフトレバー61で要求している変速段とは、異なる所定の変速段に変速している(S5)。このため、シンクロメッシュ機構によって、自動変速装置30におけるギヤ列の噛合に「ズレ」が発生し、アップロックを回避できる可能性が拡大する。そして、運転者がシフトレバー61で要求している変速段と一致するように変速をリトライしている(S5)。従って、エンジン10が停止中であっても、ギヤのアップロックを回避してギヤ駐車することができる。 (もっと読む)


【課題】EV走行モードからの切り替えを運転者に対して十分に促すこと。
【解決手段】エンジン10の動力を用いたエンジン走行モード、モータ/ジェネレータ20の動力を用いたEV走行モード、又はエンジン10及びモータ/ジェネレータ20の双方の動力を用いたハイブリッド走行モード、を運転者に手動で選択させる走行モード選択装置と、走行モードに応じた前記動力を駆動輪WL,WR側に伝えると共に、EV走行モードが選択された際にニュートラル状態になる手動変速機30と、EV走行モードが選択された際にエンジン10を停止させ、EV走行モードの停止条件のときに当該EV走行モードのままエンジン10を始動させるハイブリッドECU100及びエンジンECU101と、を備えること。 (もっと読む)


【課題】アクセルオフ操作時に常に最適ギヤ比へのシフトダウンを行って適切なエンジンブレーキ作用を発生できる車両用変速制御装置を提供する。
【解決手段】補助ブレーキ切換スイッチの切換位置及び車速Vに基づき、目標制動力算出部31で実際に発生させるべき目標制動力tgtBを具体的に算出し、その目標制動力tgtBを達成可能な目標ギヤ段tgtGを目標ギヤ段算出部32で算出してシフトダウンを行う。目標制動力tgtBの算出時には、スイッチ切換位置がSDB弱位置のときに比較してSDB強位置ではより大きな目標制動力tgtBを算出し、より低ギヤ側の目標ギヤ段tgtGにシフトダウンすることによりエンジンブレーキ作用を高める。 (もっと読む)


【課題】アンチロックブレーキ装置の有無に関わらずホイールのスリップ状態を確実に判定し、このスリップ判定に基づきホイールスリップ時の車速の誤認識に起因する不適切なシフトダウンを未然に回避でき、もってエンジン破損や車両挙動の乱れなどを確実に防止できる自動変速機の制御装置を提供する。
【解決手段】変速制御を実行するECU側で車両のホイールがスリップ状態(フルロック、ハーフロック、スティックスリップ)であるか否かを判定し(S8)、判定がYesのときにはシフトダウン禁止フラグF1をセットして(S10)、シフトマップから求めた目標変速段に基づくシフトダウンを禁止する。 (もっと読む)


【課題】摩擦クラッチの強制解放の頻度を低下させ、減速中または減速後にアクセルペダルが踏み込まれたら速やかに加速を開始し得る制御装置を提供する。
【解決手段】内燃機関1と変速機入力軸5の間に介装された摩擦クラッチ2と、摩擦クラッチ2の締結、解放を制御する変速機コントローラ31とを備え、変速機コントローラ31が、車両の運転状態に応じて摩擦クラッチ2の入力側と出力側で差回転が生じるスリップ制御、及びエンジンストール防止のために車両の減速度に応じて摩擦クラッチ2を強制解放するクラッチ強制解放制御を実行する自動変速機システムにおいて、変速機コントローラ31は、スリップ制御実行中の減速時には、クラッチ強制解放制御を実行するか否かを判断するための減速度閾値をスリップ制御非実行時よりも緩和する。 (もっと読む)


161 - 180 / 1,106