説明

Fターム[3L044CA16]の内容

冷凍機械と関連しない装置 (4,309) | 冷却対象 (719) | 電子機器 (231) | 超電導コイル (32)

Fターム[3L044CA16]に分類される特許

1 - 20 / 32


【課題】デュワ側のトランスファラインを差し込んだまま閉塞を解除できる冷媒注入用トランスファラインを実現する。
【解決手段】冷媒が貯蔵されたコンテナに一端が挿入され二重管よりなるコンテナ側トランスファラインと、デュワに一端が挿入され二重管よりなるデュワ側トランスファラインと、前記コンテナ側トランスファラインの他端と前記デュワ側トランスファラインの他端とを連結するバヨネットとを具備する冷媒注入用トランスファラインにおいて、前記デュワ側トランスファラインの他端の前記二重管の内管と外管との間の設けられた加熱手段を具備したことを特徴とする冷媒注入用トランスファラインである。 (もっと読む)


【課題】第1槽内の圧力低下を防ぐことが可能な加圧超流動ヘリウムクライオスタット及びその制御方法を提供する。
【解決手段】加圧超流動ヘリウムクライオスタット1は、液体ヘリウムを貯留する第1槽11と、第1槽11内に連通路13を介して連通し、加圧超流動ヘリウムを貯留する第2槽12と、連通路13を開閉する弁体14と、第1槽11内の液体ヘリウムを絞り膨張させてその絞り膨張により発生する冷熱により第2槽12内を冷却する超流動ヘリウム冷却手段15〜19と、第1槽11内に設けられ、当該第1槽11内の液体ヘリウムを加熱可能な加熱手段21と、を備えている。 (もっと読む)


【課題】HeII冷却熱交換器の熱伝達特性を大幅に改善する。
【解決手段】ヘリウム貯槽から供給されて液体ヘリウム槽5に貯えられた液体ヘリウムを、圧縮機2で吸気して減圧し、λ点(2.18K、5.04kPa)より低温低圧の減圧HeIIに維持する。冷却対象液体ヘリウムを導く銅管周囲に、大径銅円板と、円周上に複数の切り欠きがある厚さ0.5mm以下の小径銅円板とを交互に重ねて取り付けた熱交換器4の銅管に、冷凍機1から供給される冷却対象のHeIを通す。減圧HeIIを熱交換器4の大径銅円板と小径銅円板との間の狭小流路に満たす。減圧HeIIが飽和HeII状態と過熱HeII状態と過熱HeI状態と沸騰状態とを繰り返しながら熱を吸収する沸騰冷却サイクルを、狭小流路中の切り欠きで誘起して、冷却対象ヘリウムを効率的に冷却する。切り欠きの代わりに網リングやスリット等の微細空間部を設けてもよい。 (もっと読む)


【課題】既存の冷却設備に適用させやすく、通電時におけるガス冷却式電流リードの冷却不足を防ぐことができ、かつ液体冷媒の無駄な消費を抑えることができる極低温冷媒再凝縮装置、および該装置が搭載された超電導磁石装置を提供すること。
【解決手段】極低温冷媒再凝縮装置2は、ガス冷却式電流リード7を冷却したガス10を再凝縮させる冷凍機12と、冷凍機12により再凝縮された液体冷媒を冷媒槽6に戻す冷媒導入管14と、ガス冷却式電流リード7を冷却したガス10を大気へ放出させるガス放出の動作と当該ガス放出を阻止する動作とを動的に切り替えるガス放出手段16とを備えている。 (もっと読む)


極低温システムは、液体ヘリウム(LH)容器内に超伝導マグネット(20)を有する。ヘリウム蒸気(VH)は上昇して、再液化表面(50,50’,50’’)と接する。前記再液化表面(50,50’,50’’)で前記ヘリウム蒸気(VH)は液化して、重力によって前記再液化表面の下端へ流れ落ちる。複数のフィン(52)が前記再液化表面から延在する。あるいは、複数の溝(52,52’,52’’)が前記再液化表面に刻み込まれることで、ある厚さの膜は分裂し、かつ前記液体ヘリウムの滴が前記再液化器(30)の全垂直長まで進行することなく前記再液化表面を離れる経路が供される。
(もっと読む)


【課題】冷凍機を備えた冷却容器において、冷凍機の冷凍能力が増加しても、冷却ステージと被冷却体である冷媒の温度差を小さく保つ伝熱構造を実現する。
【解決手段】冷却容器は、低温液体の冷媒を収容して内部に冷媒14の液面40を形成する冷媒容器13と、冷媒容器13を取り囲む断熱容器11と、冷媒容器13内に収容された冷却ステージ19を備えた冷凍機18と、冷却ステージ19と熱的に接続されて冷媒容器13内に収容された伝熱部材21と、を有する。伝熱部材21は下方に向けて開放している筒状部を有して、筒状部の上端部は閉じて冷却ステージ19に熱的に接続されている。
筒状部の下端部全体が冷媒14の液面40下に浸漬され、冷媒の液面40上の空間が、筒状部によって仕切られていてもよい。 (もっと読む)


【課題】圧力制御が正常に働かない状態であるときにこれを検出してヘリウム槽内部が負圧になるのを事前に防止し、空気流入による氷結、閉塞を防止する超電導電磁石を得る。
【解決手段】ヘリウム槽3内部の圧力が大気圧以下にならないように、圧力センサー12で測定したヘリウム槽3内部の圧力に応じてヒーター14の熱量を制御する圧力制御装置13を備え、圧力制御装置13によるヘリウム槽3内部の圧力の制御が働く状態であるか否かを検出する状態検出手段を設け、制御が働かない状態であることを検出したときに冷凍機9の動作を停止させる。 (もっと読む)


【課題】液体水素を安全に利用して、被冷却物を極低温に安定して冷却保持できること。
【解決手段】極低温冷凍機11と、この極低温冷凍機を被冷却物としての超電導コイル1に熱的に接続する伝熱板13と、加圧した水素ガスが注入され、この水素ガスが極低温冷凍機にて冷却され凝縮されて液体水素20となり貯溜される密閉構造の水素容器12とを有し、極低温冷凍機11により伝熱板13を介して超電導コイル1が冷却されると共に、水素容器12内の液体水素20により超電導コイル1が冷却可能に構成されたものである。 (もっと読む)


【課題】浸漬冷却方式のように冷却温度が特定の冷媒の沸点に制約されることなく、熱負荷変動があっても超電導コイル等の被冷却物を安定に冷却可能な極低温冷却装置および制御方法を提供すること。
【解決手段】被冷却物と、加圧したガスを収容可能な低温ガス容器と、前記低温ガス容器に接続されるとともに前記被冷却物に熱的に接触している冷却ガス配管と、前記冷却ガス配管に取り付けられた冷却ガス流量制御弁と、ガス冷却手段と、前記被冷却物の状態変化を測定する手段を有する極低温冷却装置。大気圧より加圧したガスを前記ガス冷却手段を用いて冷却した状態で前記低温ガス容器に蓄え、前記被冷却物の状態変化に応じて前記冷却ガス流量制御弁を開き、前記冷却ガス配管に流すことで前記被冷却物を冷却することにより、上記極低温冷却装置を制御する。 (もっと読む)


【課題】超電導部材を冷却媒体によって簡易且つ安定して冷却することのできる超電導部材の冷却方法を提供する。
【解決手段】冷却媒体の貯蔵容器Aから吸入側に冷却媒体配管が配設されている循環ポンプBにより、冷却媒体を冷凍機Cと、超電導部材Eが収容された断熱容器Dを経由して循環ポンプ吸入側に循環させる、超電導部材の冷却方法において、貯蔵容器内の冷却媒体温度を上記冷却媒体温度よりも高く維持し、超電導部材における冷却負荷が一時的に減少してコールドヘッド温度が冷却媒体の凝固点に近づいたときに、断熱容器から循環ポンプ吸入側に戻る主循環系の冷却媒体の一部を、貯蔵容器に接続するように配設した副循環系に分流させて、貯蔵容器内の温度の冷却媒体との混合により冷凍機に供給する冷却媒体温度の温度を上昇させることにより、冷凍機において冷却された冷却媒体が凝固するのを防止する。 (もっと読む)


【課題】従来型の加圧超流動ヘリウムクライオスタットでは、4.2K液体ヘリウム槽と超流動ヘリウム槽との間の支持構造物や、両者の連通路の壁や通路に存在する液体ヘリウムの熱伝導により、超流動ヘリウム槽への熱流が発生し、4.2K液体ヘリウム槽の温度が低下する。この結果、4.2K液体ヘリウム槽の液面低下を招き、冷媒補充間隔が短期化する。
【解決手段】液体ヘリウムを貯留する4.2K液体ヘリウム槽と、前記液体ヘリウムよりも低温の液体ヘリウムを貯留する超流動ヘリウム槽と、4.2K液体ヘリウム槽の蒸発ガスにより冷却され、外界から4.2K液体ヘリウム槽への熱輻射を抑制する熱シールドを具備するクライオスタットにおいて、熱シールドと4.2K液体ヘリウム槽の間にガスを利用する熱スイッチを設置した。これにより、4.2K液体ヘリウム槽を昇温し、冷媒補充間隔の短期化を抑制する。 (もっと読む)


【課題】超電導機器に交流電源を印加したときに容器に流れる渦電流によって生じる熱の影響を冷媒が受けるのを防止すると共に、容器の小型化及び低コスト化を図る。
【解決手段】交流電源が印加される超電導機器を冷却する冷媒を収容する内槽と、該内槽の外周を真空断熱空間をあけて囲む外槽と、を備えた超電導機器の冷却容器において、前記内槽を形成する内槽材は、絶縁性の繊維強化樹脂材から形成される一方、前記外槽を形成する外槽材は、前記内槽材より強度を有する金属材あるいは樹脂材からなる別材で形成され、前記内槽材の平均肉厚より外槽材の平均肉厚が薄くされている。 (もっと読む)


【課題】 液体窒素を用いた冷却器に関し、低コストで携帯可能な液体窒素冷却器を実現する。
【解決手段】 断熱容器1と、断熱容器1内に収容されるとともに液体窒素4を吸収および保持する構造を有する連続気泡を有する繊維集合体3を内部に挿入された複数の中空管状容器2とを少なくとも備える。 (もっと読む)


【課題】被冷却物を冷媒に浸漬した状態で格納する貯蔵容器と真空容器との間に熱シールドを設け、その熱シールドを冷却する冷媒を極低温冷凍機により冷却するようにした極低温格納容器冷却システムにおいて、極低温冷凍機で発生する振動の抑制と、冷媒貯蔵容器からの冷媒の蒸発量抑制を図る。
【解決手段】貯蔵容器とそれを収容する真空容器及び熱シールドを備えた極低温格納容器と、極低温冷凍機を搭載した冷却源とを、輸送配管によって連結し、極低温冷凍機の振動が極低温格納容器に直接伝わらないようにした。輸送配管にベローズ部を設けることで更に振動を低減できる。また、極低温に冷却したヘリウムガスを利用する循環冷却方式とし、最も低温に冷却された冷媒を用いて2枚設置した熱シールドのうちの低温側シールドを冷却し、次に1枚のみ設置した熱シールドを冷却し、最後に2枚設置したうちの高温側シールドを冷却して、冷媒の蒸発量を抑制する。 (もっと読む)


【課題】簡単な構成で長期的に亘って安定して液体冷媒を保冷することができる真空断熱容器を提供する。
【解決手段】真空断熱容器1は、液相LNと気相GNとからなる冷媒を貯留する冷媒槽10と、冷媒槽10の外周を覆う真空槽20とを備える。そして、真空断熱容器1は、冷媒槽10と真空槽20との間に形成される真空断熱層30を上部断熱層30uと下部断熱層30dとに分割する仕切り部(仕切り板90)を有することを特徴とする。この容器1では、上部断熱層30uと下部断熱層30dとが独立した空間であるため、上部断熱層30uの真空度が下がっても、その影響が下部断熱層30dに及ばない。つまり、真空断熱層30を区画するという簡単な構成で下部断熱層30dの真空度を高い状態で長期的に維持することができる。その結果、長期間に亘って安定して液体冷媒LNを保冷することができる。 (もっと読む)


【課題】酸化物超電導体などの高い臨界温度を有する超電導体を冷却するための液体窒素を、その凝固温度近傍まで冷却する際に、液体窒素を固化させることなく冷却する方法を提供すること。
【解決手段】二重管式熱交換器の内管に液体窒素(温流体)を流通させ、外管に冷凍機により冷却したネオン(冷流体)を流し、液体窒素とネオンとを並流で流通させる。あるいは、外管に液体窒素を、内管にネオンを流して、並流で流通させる。液体窒素を固化させることなく、その凝固温度近傍まで冷却することが可能になる。液体窒素のレイノルズ数を3000以上とすることにより、冷却効果が高められる。 (もっと読む)


【課題】 LNG冷熱を利用した超電導電力システムにおいて、コンパクトで高効率、かつ信頼性が高く安価な運転コストのシステムを提供する。
【解決手段】 超電導コイル1としてBi、Sr、Ca、Cu、Oの金属の構成比が2:2:2:3の2223相を用い臨界温度を110Kとし、気体冷媒(気体窒素)により超電導コイル1を冷却するように前記超電導コイル1の冷却システム2を構成し、臨界温度近傍の温度の液化天然ガス(LNG)により超電導コイル1の冷却システム2の気体媒体を冷却するとともに液化天然ガスの温度と前記超電導コイル1の臨界温度との差を補償するために臨界温度より低温の補償用液体冷媒(液体窒素)を冷却システム2の気体冷媒に供給して、超電導コイル1を所望の冷却温度とする。 (もっと読む)


【課題】クライオクーラとコールドマスの間を迅速かつ自動的に熱切断及び熱接続させることが可能なシステム及び方法を提供する。
【解決手段】本発明は、MRシステムのクライオクーラ(74)をコールドマスリザーバ(72)から自動的に切断するための装置及び方法を提供する。クライオクーラ・サーマルリンク(76)は、クライオクーラ(74)と熱的に接続されるように構成された第1の端部プレート(84)と、コールドマス(72)と熱的に接続されるように構成された第2の端部プレート(88)と、を含む。第1の(84)と第2の端部プレート(88)の間の空間(80)を壁によって囲繞しており、この壁は第1の端部プレート(84)に取り付けられた第1の端部(82)と、第2の端部プレート(88)に取り付けられた第2の端部(86)と、を含む。この空間(80)内に作動流体(90)が位置決めされている。 (もっと読む)


【課題】超伝導技術の発展にともない長距離超伝導ケーブルの次世代冷媒などとしてその適用が期待されているスラッシュ窒素は、現在、粒子径がmmオーダーの大粒径粒子の生成が可能な程度の技術しかなく、生成される窒素固体の粒径分布も不均一で、到底、超伝導冷却への適用は困難である。この問題を解決することが、超伝導ケーブル冷却技術開発にあたり強く求められている。
【解決手段】微細な粒径を持ち且つ均一な固体窒素粒子を含有するマイクロスラッシュ窒素二相流体といった極低温固液二相流体を、効率的に且つ簡単な手法で、そして安定して生成せしめることが可能となった。これにより、マイクロスラッシュ窒素二相流利用型超伝導ケーブル冷却システムが提供できる。本技術は、スラッシュ水素やスラッシュ酸素という極低温二相流体の生成にも応用可能である。 (もっと読む)


【課題】ボイルオフした冷媒を再活用し閉鎖冷媒冷却システム内に蓄積できるシステムを提供する。
【解決手段】冷却システム(14)はマグネット(12)と熱的に接触させており、これに対して冷却を提供する。冷却システム(14)により放出された気体を蓄積するために、蓄積タンク(32)を冷却システム(14)と流体接続させている。次いで、必要に応じて蓄積しておいた気体を冷却システム(14)に戻すように放出することができる。 (もっと読む)


1 - 20 / 32