説明

Fターム[4D006JA44]の内容

半透膜を用いた分離 (123,001) | 装置の特徴箇所 (8,864) | 希釈室、脱塩室 (140)

Fターム[4D006JA44]に分類される特許

121 - 140 / 140


【課題】バイポーラ膜を用いない新しい方式の電離によって、中性塩から酸/アルカリを生成したり、或いは酸若しくはアルカリを濃縮・再生する装置を提供する。
【解決手段】本発明の一態様は、陽極と陰極との間にカチオン交換膜とアニオン交換膜とが交互に配列されて複数の室が形成されており、陽極とカチオン交換膜とで陽極室が画定され、これに隣接して、陽極側から、酸室;電離室;アルカリ室;並びに水解室;の順に配列された室の組が一つ若しくは二つ以上繰り返して配置され、最も陰極側の水解室が陰極室として画定されていることを特徴とする電気透析装置に関する。 (もっと読む)


【課題】イオン交換膜として機能する部材と細孔容積や比表面積が格段に大きなイオン交換体として機能する部材が一体形成された複合多孔質イオン交換体の製造方法を提供すること。
【解決手段】スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン等のイオン交換基を含まない油溶性モノマー、ソルビタンモノオレエート等の界面活性剤、水及び重合開始剤とを攪拌混合し、油中水滴型エマルジョンを得る工程、前記油中水滴型エマルジョンを、該油中水滴型エマルジョンが接する部分の少なくとも一部を疎水性材料で構成された容器に充填し、重合する工程、前記工程で得られた重合体にイオン交換基を導入する工程、を有する複合多孔質イオン交換体の製造方法。 (もっと読む)


【課題】電気消イオン装置において電極、膜および樹脂がスケールなどで汚染され安定した水等から高品質の消イオン水を安定して得ることができる装置を提供する。
【解決手段】電気消イオン装置隣接したイオン減少用区画24は流体流れを保持しながら、イオン濃縮用区画22には再循環用流体路で循環し、電極極性逆転時には流れもそれぞれ別々に逆転を施し、また、電気消イオン装置は、新規のセル対群という構成にて集成され、イオン濃縮用区画を通る流体流れが実質的に上向き方向となるよう配置されており、したがってイオン濃縮用区画において生成するガスの効率的な除去が可能となり高品質の消イオン液を安定して得ることができる。 (もっと読む)


【課題】流体の精製法を提供する。
【解決手段】a)〜e)の工程からなる流体の精製法。a)イオン減少用区画と隣接するイオン濃縮用区画を複数有しこの各区画にイオン交換物質を収容する複数の区画に一定間隔で交互に配置されたアニオン交換膜とカチオン交換膜を配し、これらが電気的連通関連にある第1の電極と第2の電極との間に配置され、b)イオン濃縮用区画を第1の方向に通る第1の流れとイオン減少用区画を第1の方向に通る第2の流れを形成する工程、c)第1の電極に第1の極性を、第2の電極に第2の極性を付与し電圧を加え電位を生成させてイオン減少用区画を出る減少流体流れとイオン濃縮用区画を出る濃縮流体流れを生ずる工程、d)イオン濃縮用区画を通る第1の流体流れの方向をこれと反対の第2の方向に逆転させる工程、e)第1の流体流れがイオン濃縮用区画を第2の方向に流れている間にイオン減少用区画から減少流体生成物を回収する工程 (もっと読む)


【課題】水の流れが均一で、シリカ等の弱イオンも効果的に除去できる純水装置を提供すること。
【解決手段】陽極と陰極の間をアニオン膜とカチオン膜で交互に複数の濃縮室と脱塩室に区切った電気再生式純水装置において、
1)前記複数の濃縮室と脱塩室に、それぞれ別々に直列に水を流し、
2)前記水はNa型のイオン交換体で軟水化処理され、かつ、脱塩室に流す水と濃縮室に流す水との割合が、1:0.5〜1.0の割合であること、前記濃縮室にはカーボン繊維又はイオン交換体、前記脱塩室にはイオン交換体を充填したこと及び前記イオン交換体は厚さ方向に所定の厚さにプレスし、温水に浸漬させた後、冷水に浸漬させたものであること。 (もっと読む)


【課題】熱交換器を用いることなく、得られる純水の水質変動が防止される純水製造装置を提供する。
【解決手段】原水は、活性炭濾過装置1によって濾過された後、逆浸透膜装置用給水ポンプ2を経て逆浸透膜装置3へ送られ、脱塩処理される。逆浸透膜装置3で脱塩処理された水は、水温センサ4aを備えた水質センサ4と接触した後、電気脱イオン装置5へ送られ、電気脱イオン処理される。この電気脱イオン処理水は、水温センサ6aを有した水質センサ6と接触した後、処理水(純水)として取り出される。水温センサ6aの検知信号は、電気脱イオン装置通電制御回路8に入力され、電気脱イオン装置5からの処理水の導電率又は比抵抗が一定となるように、電気脱イオン装置5への印加電圧及び/又は通電電流を制御する。 (もっと読む)


【課題】 イオン交換膜の使用量を低減すると共に、装置からの水漏れのない電気式脱イオン水製造装置を提供すること。
【解決手段】交互に配設される複数枚の陽イオン交換膜6と陰イオン交換膜9の間に、窓状の開口41、51を有する枠体4、5を介在させて濃縮室と脱塩室を交互に積層して形成される電気式脱イオン水製造装置10において、窓状の開口の包囲部47、57に被処理水、脱塩水及び濃縮水が流れる連通孔42、43、44をそれぞれ形成し、イオン交換膜6、9の外縁の寸法を枠体4、5の外縁の寸法より小さく且つ連通孔42、43、44を回避する大きさとし、イオン交換膜6、9の外側にフィルム状膜包囲スペーサー7を配設する。 (もっと読む)


【課題】 海水から、マグネシウムやカルシウムなどのミネラル成分濃度が充分に高く、ナトリウム濃度が充分に低減されたミネラル液を非加熱で得ることができる、ミネラル液の製造方法を提供する。
【解決手段】 海水を逆浸透膜で処理することにより濃縮液(A1)と膜透過液(A2)とに分離する工程(I)と、陽極と陰極の間に一価アニオン選択透過性の陰イオン交換膜と陽イオン交換膜が対として設けられてなる電気透析装置で前記濃縮液(A1)を処理することにより、陽イオン濃度と一価陰イオン濃度が高く二価以上の陰イオン濃度が低い濃縮液(B1)を得る工程(II)と、陽極と陰極の間に一価カチオン選択透過性の陽イオン交換膜と陰イオン交換膜が対として設けられてなる電気透析装置で前記濃縮液(B1)を処理することにより、高濃度ミネラル液である二価以上の陽イオン濃度が高く一価陽イオン濃度が低い濃縮液(C1)を得る工程(III)と、を含む。 (もっと読む)


本発明は、脱塩効率に優れた新しい構成の電気式脱塩装置を提供することを目的とする。かかる課題を解決するための手段として、本発明の一態様は、陰極と陽極の間に、複数のイオン交換膜で仕切られた脱塩室及び濃縮室及び電極室を有する電気式脱塩装置であって、脱塩室及び/又は濃縮室及び/又は電極室内に、アニオン交換繊維材料の層及びカチオン交換繊維材料の層の少なくとも一方が、通水方向に交差して積層配置されていることを特徴とする電気式脱塩装置を提供する。
(もっと読む)


本発明は、低濃度水チャンバを構成しているカチオン交換膜及びアニオン交換膜の中央セクションが、軸方向に沿って接着されており、低濃度水チャンバは、内部低濃度水チャンバユニットと外部低濃度水チャンバユニットに分離されており、この結果、低濃度水が外部低濃度水チャンバユニット及び内部低濃度水チャンバユニットを折り返し方式によって順番に流れる折り返し型電気式脱イオン装置を開示している。
(もっと読む)


【課題】 脱塩室及び濃縮室を複数個組み立てる際、モジュールを構成する部品点数を低減でき、ずれが生じ難く、従って内部リークや外部リークが生じ難く、製作コストを低減できるEDI、セル及びモジュールを提供すること。
【解決手段】 板状部材1の一方の側面に板状部材1の途中までの深さで形成される第1窓部2と、板状部材1の他方の側面に形成される第1窓部2に連通すると共に、第1窓部2より小さな第2窓部3と、第1窓部2と第2窓部3の連通部分の段差4と、外部と第1窓部2とが連通する水の第1流路5と、外部と第2窓部3とが連通する水の第2流路6とを備える電気式脱イオン水製造装置。 (もっと読む)


【課題】生産水の一部を濃縮水に向流一過式で通水する電気脱イオン装置を多段に設けた多段脱イオン処理において、後段の電気脱イオン装置の耐久性とホウ素除去効率を確保して、極低ホウ素濃度の生産水を長期に亘り安定かつ確実に得る。
【解決手段】前段側の電気脱イオン装置1の生産水が後段側の電気脱イオン装置2の脱塩室16Bへ被処理水として導入され、その生産水の一部が濃縮水としてその濃縮室15Bに対し脱塩室16B出口に近い側から流入させ、脱塩室16B入口に近い側から流出させるよう構成された電気脱イオンシステムにおいて、最下段側の電気脱イオン装置2の脱塩室16Bへ流入する被処理水のイオン負荷を増大させるイオン負荷増大手段を設ける。イオン負荷増大手段としては、ナトリウム塩及び/又は水酸化ナトリウムの添加手段3及び/又はUV酸化装置4が挙げられる。 (もっと読む)


【課題】 半導体製造工場などにおける金属エッチング工程などから発生する金属含有酸廃液から、金属を分離するとともに酸を高い収率で回収する。
【解決手段】 (A)拡散透析層で仕切られた拡散透析室1 (B)金属含有酸廃液を拡散透析層により隔てられた一方の側の拡散透析室に送るための供給手段3(C)拡散透析層により隔てられた他方の側の拡散透析室に水を補充するための水補充手段5(D)拡散透析室で処理された金属含有酸廃液を透析残液濃縮用蒸留塔に送るための供給手段7(E)拡散透析室における水を補充する側の底部から再生酸含有溶液を回収する手段11(F)透析残液濃縮用蒸留塔8(G)前記透析残液濃縮用蒸留塔から得られた蒸留水を水補充手段に供給するための供給手段9(H)前記透析残液濃縮用蒸留塔の底部から濃縮された金属を含む金属含有酸廃液を回収する手段10よりなることを特徴とする金属含有酸廃液の再生装置。 (もっと読む)


【課題】 化学工業、電子・電気工業、発酵工業、生物工業、医薬品工業などの産業や海水処理に使用される脱塩や純水の製造に適するイオン交換複合膜体の提供。
【解決手段】 カチオン交換膜またはアニオン交換膜の一方の面に、カチオン性基および/またはアニオン性基を有するイオン性構造体層を形成してなるイオン交換複合膜体であって、上記カチオン性基および/またはアニオン性基が、平均粒子径が10nm〜10μmの範囲のアニオン性粒状重合体および/またはカチオン性粒状重合体に由来する基であることを特徴とするイオン交換複合膜体。 (もっと読む)


【課題】 海水または海洋深層水を原料とし、濃縮および脱塩を行い、用途に適したイオンバランスを持つ脱塩水およびそれを容易に製造するための方法を提供すること。
【解決手段】 モザイク荷電膜が装着された透析装置により、原水である海水を脱塩処理してナトリウムイオンおよび塩素イオンの濃度を上記原水よりも低くするとともに、上記原水に含まれる塩化ナトリウム以外のイオン濃度を、上記原水とは異なる濃度に調整することを特徴とする海水の処理方法。 (もっと読む)


【課題】一価陽イオン選択透過性の耐久性、ならびに選択性付与による直流抵抗の増加および限界電流密度の低下の度合を抑制した、一価陽イオン選択透過性陽イオン交換膜の提供。
【解決手段】スチレンに基づく重合単位およびクロロメチルスチレンに基づく重合単位を含有する共重合体からなり、スルホン酸基を有する陽イオン交換膜の表面に、カチオン性基を有する重合体を含有する溶液を接触させ、50℃以上に加熱することを特徴とする一価陽イオン選択透過性陽イオン交換膜の製造方法。 (もっと読む)


【課題】 (1)電極寿命の長寿命化、(2)電極反応による副生成物、有害物質または腐食性物質の生成抑制、(3)メンテナンスの簡易化が可能となる複極室および該複極室を備えた電気化学的液体処理装置を提供する。
【解決手段】 電気透析装置および電気分解装置に用いる複極室において、陽極側より順に、アニオン交換膜、電極およびカチオン交換膜の順に設置し、カチオン交換膜とアニオン交換膜の間に供給する液体が純水である。 (もっと読む)


本発明の水処理システムは、都市用水、井戸水、汽水及び汚れを含む水のような水源からの水に含まれる何らかの硬度誘発種の少なくとも一部を除去することによって、処理水を使用地点に提供する。水処理システムは、通常、水源又は入口点からの水を受け、かつ処理水を使用地点に送り出す前に、少なくとも数種の望ましくない種を含む水を浄化する。水処理システムは、電気脱イオン化装置のような電気化学装置と直列に加圧貯蔵システムを有する。水処理システムは、処理システム又は水処理システムの部品の少なくとも1つの操作パラメータを調整又は制御する制御装置を有することができる。
(もっと読む)


経路を長くする仕組みを形成する渦巻き状セルの内部に流路を含むらせん状の電気脱イオンデバイス。膜間の不透過性バリアにより、供給物の流れ及び高濃度側の流れが混合することを防止する。流路に沿ったシール又は流路の様々な部分の間でのシールにより、多段階デバイス(すなわち、異なる段階のための別個の供給物デバイス及び/又は高濃度側の流れ)を規定することができ、且つ/或いは、相互に並流、向流又は横流であり得る、好ましい方向に沿った供給物の流れ及び高濃度側の流れを導くことができる。高濃度側区画における帯域(BB)は、スケール形成が生じないように、スケール形成化学種を異なる領域において別個の経路に沿って向けることができ、化学種の分離を、高濃度側の1つの領域への化学種の輸送を高め、且つ/又は、その領域における相補的なシーラント化学種の輸送を阻害する異なるモノタイプ樹脂の層を介して供給物の流れを軸方向に沿って配置することによって高めることができる。 (もっと読む)


【課題】弱電解質の除去効率を高めた電気再生式純水製造装置を提供する。
【解決手段】陽極(2)を備えた陽極室(3)と陰極(4)を備えた陰極室(5)との間に陰イオン交換膜および陽イオン交換膜を交互に配列して順次形成される複数組の脱塩室(81)・・・及び濃縮室(91)・・・から構成され、脱塩室には陽イオン交換体および陰イオン交換体の混合物(Z)が収容され、上記のイオン交換体の混合物(Z)と陰イオン交換膜との間には陰イオン交換体(X)を単独で収容して成る。 (もっと読む)


121 - 140 / 140