説明

Fターム[4D006JA44]の内容

半透膜を用いた分離 (123,001) | 装置の特徴箇所 (8,864) | 希釈室、脱塩室 (140)

Fターム[4D006JA44]に分類される特許

81 - 100 / 140


【課題】劣化した無電解めっき液の不要イオンを目標とする濃度まで精度良く除去できる無電解めっき液の再生方法を提供する。
【解決手段】不要イオンが蓄積し、劣化した無電解めっき液(めっき液と記す)を電気透析法により再生する方法であって、陽極板および陰極板間に複数の陽イオン交換膜と陰イオン交換膜を交互に配置して仕切られた脱塩室および濃縮室を有する電気透析ユニットを用いて、脱塩室にめっき液を循環して供給する工程、濃縮室に希薄電解液を循環して供給する工程、陽極板および陰極板間に電圧を印加して電気透析して、めっき液に蓄積した不要イオンをめっき液側から希薄電解液側に移行させて除去し、めっき液を再生する工程を有し、蓄積した不要イオン濃度が減少していくめっき液の導電率または不要イオン濃度が増加していく希薄電解液の導電率の変化により電気透析条件を制御するめっき液の再生方法。 (もっと読む)


【課題】濃縮室でのスケール生成を防止し、かつ、イオン成分が高度に除去された脱イオン水が得られるEDIを目的とする。
【解決手段】本発明のEDIは、陽極と陰極との間に、一側のカチオン交換膜12と他側のアニオン交換膜22とで区画され、イオン交換体が充填された脱塩室10、20と、前記カチオン交換膜12又は前記アニオン交換膜22を介して、前記脱塩室の両側に設けられた濃縮室とを有し、2つの脱塩室に挟持されている濃縮室30には、その厚さ方向に区画して、陽極側の陽極側小濃縮室34と陰極側の陰極側小濃縮室32とを形成する中間膜36が配置され、前記陽極側小濃縮室34には、カチオン交換体を含むイオン交換体が充填され、前記陰極側小濃縮室32には、アニオン交換体を含むイオン交換体が充填されていることよりなる。 (もっと読む)


【課題】排水のpHがホウ酸のイオン化が起こるpHであることに拘泥されず、共存する強酸の陰イオンを事前に除去することなくホウ素成分の回収を十分に実現でき、しかもホウ素成分の回収を低エネルギー消費量で、かつコンパクトな装置によって実現可能な、ホウ素含有排水の処理方法を提供することにある。
【解決手段】ホウ素含有排水を第1のバイポーラ膜により生じた水酸化物イオンと反応させて、排水中にホウ酸イオンを生成する工程、陰イオン交換膜に上記ホウ酸イオンを通過させて、上記排水から上記ホウ酸イオンを分離する工程、陰イオン交換膜を通過したホウ酸イオンを、第2のバイポーラ膜により生じた水素イオンと反応させて、濃縮ホウ酸を生成する工程、および上記濃縮ホウ酸を回収する工程を含む。 (もっと読む)


濃度差エネルギーを用いて塩水を脱塩する方法及び装置が開示される。生産物室中に収容されている塩水を脱塩するために、駆動セルは駆動電圧を発生させるために使われる。充分な電圧が生産物室に印加されるとき、陰イオン及び陽イオンが生産室から移動し、これにより前記水を脱塩するように、生産物室は脱塩電圧を印加される。駆動電圧を含む脱塩電圧以上に充分に大きな電圧が生産物室に印加され、その結果、脱塩が生じる。濃度差エネルギーは、有益に、濃縮液を使って発生することができ、それは、例えば太陽エネルギーを使って生成することができる。 (もっと読む)


【課題】運転時の省エネルギー化を実現し、かつ、比抵抗の高い、良好な水質を得られるEDIを目的とする。
【解決手段】本発明のEDIは、陽極室20と陰極室10との間に、カチオン交換膜52とアニオン交換膜54とで区画される空間にイオン交換体が充填されて主脱塩室50が設けられ、前記主脱塩室50の両側に濃縮室60、62が設けられ、陽極室20に隣接する副脱塩室40および/または陰極室10に隣接する副脱塩室30を有し、副脱塩室30もしくは副脱塩室40を流通した被処理水を主脱塩室50に流通させる手段、および/または、前記主脱塩室50を流通した被処理水を前記副脱塩室30もしくは前記副脱塩室40に流通させる手段を有することよりなる。 (もっと読む)


【課題】設置スペースを拡大させることなく、容易に高純度の純水を安定供給させることが可能な水処理装置1を提供すること。
【解決手段】水処理装置1は、被処理水を貯水する第1貯水タンク4と、前記第1貯水タンク4から供給される前記被処理水を精製して第1処理水を得る第1精製部5a、5bと、前記第1精製部5a、5bの下流側に配設され、前記第1精製部5a、5bにより精製された第1処理水を精製して第2処理水を得る第2精製部6と、前記第1精製部5a、5bと前記第2精製部6とを接続する第1接続ライン10bと、前記第1貯水タンク4と前記第1接続ライン10bとを接続させる第1補助ライン10cと、を備える。 (もっと読む)


【課題】長期保存が利かずに国内備蓄のできない水酸化リチウムを必要時に製造できる方法を提供する。
【解決手段】備蓄しておける炭酸リチウム、リチウム含有鉱石、使用済みリチウムイオン二次電池塩酸を用いて塩酸リチウム水溶液にして、またリチウムを含む潅水から無機吸着剤で吸着・分離した塩化リチウム粉末を水溶液にしてバイポーラ膜電気透析により塩酸と水酸化リチウム水溶液を同時に生成させる。塩酸は、繰り返し塩化リチウムに得るために備蓄したリチウム源と反応させる。一方、水酸化リチウム水溶液は、精製工程を付して不純物を低減ないし除去し、高純度水酸化リチウム・1水和物とする。 (もっと読む)


【課題】被処理水が脱塩室内を短絡することなく、被処理水中のイオン成分の濃縮室への移動を促進することができ、特に被処理水の通水量が少ない場合であっても十分な処理水質が得られる電気脱イオン装置、及び当該電気脱イオン装置を用いた純水製造システムを提供する。
【解決手段】電気脱イオン装置1は、陰極6と陽極7との間に、複数のアニオン交換膜5とカチオン交換膜4とを配列して脱塩室2と濃縮室3とを形成してなり、脱塩室2内には、イオン交換基を有する多孔質体が充填されているとともに、脱塩室2に供給された被処理水が多孔質体の略全体に略均一に流れるようにする整流部材9が設けられている。 (もっと読む)


【課題】脱塩室内での被処理水の短絡による処理水へのイオンリークを回避し、高純度の脱イオン水を得ることのできる電気脱イオン装置、及び当該電気脱イオン装置を備える純水製造システムを提供する。
【解決手段】陰極6と陽極7との間に、複数のアニオン交換膜5とカチオン交換膜4とを交互に配列して濃縮室3と脱塩室2とを形成してなる電気脱イオン装置1において、脱塩室2内に、脱塩室2の容積よりも大きい体積を有し、弾性を有するとともに、微細なイオン交換体を保持する連続気泡構造の発泡体を圧縮した状態で充填する。 (もっと読む)


【課題】省スペース化が図れる脱塩室複数セル型のEDI、およびEDIの省スペース化が図れる脱イオンユニットを目的とする。
【解決手段】本発明のEDIは、脱塩室複数セル型のEDIであって、枠体30、50と、枠体30、50の一側に配置されたカチオン交換膜20と、枠体30、50の他側に配置されたアニオン交換膜60とを備えた脱イオンユニット10を有し、前記脱イオンユニット10には、小脱塩室32と、中間イオン交換膜40を介して隣接する小脱塩室52とを連通する被処理水流路が設けられ、小脱塩室間の被処理水の流通が、前記脱イオンユニット10内で行われることよりなる。 (もっと読む)


発電を目的とした逆電気透析に適した膜、セルおよびデバイス、ならびにその方法であって、膜は、少なくとも膜の第1の側に配置されている複数のチャネルを含み、チャネルは、流体のスルーフィードに適し、これらチャネルの寸法は、チャネル内で流体の層流を得ることを目的としている。
(もっと読む)


【課題】省電力かつ安定電圧で、脱イオン水の製造が行えるEDIを目的とする。さらに、安定的に高い水質を得ることができるEDIを目的とする。
【解決手段】本発明のEDIは、一側のカチオン交換膜32と、他側のアニオン交換膜36とで区画される空間にイオン交換体が充填されて脱塩室40が設けられ、前記脱塩室40には、前記カチオン交換膜32と前記アニオン交換膜36との間に配置された中間イオン交換膜34によって、脱塩室40の厚さ方向に多段に区画された小脱塩室42、44が形成され、前記カチオン交換膜32、または、前記アニオン交換膜36を介して、前記脱塩室40の両側に濃縮室22が設けられ、前記脱塩室40と前記濃縮室22とが、陽極16を備えた陽極室18と、陰極12を備えた陰極室14との間に配置され、前記中間イオン交換膜34を介して隣接する小脱塩室42、44の被処理水の流れ方向が、向流であることよりなる。 (もっと読む)


【課題】硼素および硬度成分を含む飲料用原水から硼素を除去して味覚に優れた飲料水を製造する方法を提供すること。
【解決手段】陰極と陽極の間にアニオン交換膜と、少なくとも一部が1価選択透過性カチオン交換膜であるカチオン交換膜とを交互に配し、この両膜に挟まれた脱塩室と濃縮室を交互に形成させた電気透析装置の脱塩室に、硼素および硬度成分を含む飲料用原水を供給することを特徴とする飲料水の製造方法。 (もっと読む)


【課題】脱塩室に充填されたイオン交換体を十分に再生することができ、処理水質を向上させることができるとともに、被処理水中のアニオン成分、カチオン成分の移動を促進し、装置全体の電気抵抗を低減することのできる電気脱イオン装置を提供する。
【解決手段】電気脱イオン装置1は、陰極6と陽極7との間に、複数のアニオン交換膜5とカチオン交換膜4とを交互に配列して濃縮室3と脱塩室2とを形成してなり、脱塩室2内に、アニオン交換体層8とカチオン交換体層9とが、少なくともそれらの一部において相互に接触するようにして、アニオン交換膜5とカチオン交換膜4との配列方向に二層以上に積層充填されている。 (もっと読む)


【課題】不純物の高い除去率と、原水水質の変動に影響されずに高い水質を得る(原水耐性)ことができる電気式脱イオン水製造装置(EDI)、および脱イオン水製造方法を目的とする。
【解決手段】本発明のEDIの脱塩室には、カチオン交換膜30とアニオン交換膜22との間に配置された中間イオン交換膜26によって、脱塩室の厚さ方向に区画された第一小脱塩室と第二小脱塩室が形成され、かつ前記第一小脱塩室と第二小脱塩室とには、脱塩室の厚さ方向と平行に、多段に区画された脱塩区が形成されていることよりなる。本発明の脱イオン水の製造方法は、前記EDIを用いた脱イオン水の製造方法であって、複数の脱塩区に被処理水を流通させることよりなる。 (もっと読む)


【課題】シリカ等の濃度が高く、処理負荷が高くなった場合や低水温で除去効率が低下した場合でも、高い処理能力を維持できる電気式脱イオン水製造装置を提供する。
【解決手段】陽極32と陰極30との間に、脱塩室D1〜D4が配置される。各脱塩室は、一側のカチオン交換膜10、他側のアニオン交換膜14及び中間イオン交換膜12とを備え、これらによって第一小脱塩室d1,d3,d5,d7と、第二小脱塩室d2,d4,d6,d8が区画される。第一小脱塩室には、カチオン交換体、アニオン交換体及びカチオン交換体の混合体とカチオン交換体との複層体、アニオン交換体とカチオン交換体との複層体のうちの1つが充填され、第二小脱塩室には、アニオン交換体またはアニオン交換体とカチオン交換体との複層体が充填される。脱塩室の両側には、アニオン交換体が充填された濃縮室20a〜20cが設けられる。 (もっと読む)


【課題】スケール発生を抑制し、高いイオン除去能力を有し、かつコンパクトなスパイラル型EDIを提供することを目的とする。
【解決手段】アニオン交換膜22とカチオン交換膜20を巻回して、脱塩室24と陰極側濃縮室18a、陽極側濃縮室18bが形成されるスパイラル型電気式脱イオン水製造装置8であって、脱塩室24と、脱塩室24を挟持するアニオン交換膜22と、カチオン交換膜20と、陰極側濃縮室18a、陽極側濃縮室18bとでセルペアが形成され、陰極電極16aと陽極電極16bとが該セルペアを挟持して配置され、前記電極が陰極側濃縮室18a、陽極側濃縮室18bに添って巻回されたスパイラルエレメントを有することよりなる。 (もっと読む)


【課題】海水等の低濃度塩水を用い、飲料水や工業用水のような無イオン水と食塩電解法に用い得る高純度食塩とを製造することができ、濃縮塩水の塩濃度を海水と同程度に抑えることも容易であるうえに、廃棄物の量も少ない塩水の処理方法を提供する。
【解決手段】1価イオン選択透過性カチオン交換膜と1価イオン選択透過性アニオン交換膜を用いた電気透析装置、蒸発濃縮装置および逆浸透膜装置を含む塩水処理装置で低濃度塩水を処理することを特徴とする無イオン水と食塩電解に用い得る固形塩または高濃度塩水とを製造する方法。 (もっと読む)


低エネルギーの水処理システム及び方法が提供される。このシステムは、部分的に処理された水及びブライン副産物を生成する少なくとも1つの電気透析装置と、軟化装置と、少なくとも1つの電気脱イオン装置とを、備える。前記部分的に処理された水流を軟化装置によって軟化して、スケール形成の可能性を減少させ、標的特性を有する水を生成する電気脱イオン装置内でのエネルギー消費を減少させる。電気脱イオン装置によって使用されるエネルギーの少なくとも一部は、その区画に導入されるブラインと海水流との間の濃度差によって発生させることができる。ブライン流は、軟化装置を再生させるためにも使用できる。
(もっと読む)


【課題】電気脱塩装置を停止しても濃縮室に残存する高濃度のイオンが処理室に拡散逆流することがなく、処理液の液質の低下することのない電気脱塩装置の運転方法を提供する。
【解決手段】陰極と陽極との間にカチオン交換膜12とバイポーラ膜11によって区画された処理室13と濃縮室14とを有する。この濃縮室14にカチオン交換樹脂16が充填されていて、クエン酸ナトリウム水溶液を処理室13入口から導入して処理室13出口より流出するとともに、純水を濃縮室14入口から導入するとともに濃縮室14出口から流出させる。そして、電気透析装置による被処理液の処理の停止後に濃縮室14に純水を流通することによりカチオン交換樹脂16の再生運転を行う。 (もっと読む)


81 - 100 / 140