説明

Fターム[4D006PB27]の内容

半透膜を用いた分離 (123,001) | 被処理物 (13,421) | 分離対象物 (5,501) | 特定の金属イオン、カチオン (226)

Fターム[4D006PB27]に分類される特許

141 - 160 / 226


【目的】ボイラ水のブローを抑制しながら、蒸気ボイラでのキャリーオーバーを抑制する。
【構成】ナノろ過膜を有するクロスフロー型ろ過装置55でろ過処理した補給水を貯水タンク40へ供給し、蒸気ボイラ20へ供給するボイラ給水として貯留する。この際、クロスフロー型ろ過装置55へ供給される補給水の電気伝導度を測定し、この電気伝導度が所定値を超える場合はクロスフロー型ろ過装置55でのブロー量を多く設定する。これにより、貯水タンク40に貯留されるボイラ給水は、各種のイオン成分が効果的に除去されたものに調製されるため、蒸気ボイラ20において濃縮が進行してもキャリーオーバーの原因となる電気伝導度の上昇が抑制される。 (もっと読む)


プロセス流れ処理のためのシステム及び方法。処理システムには、一般的に、脱塩ユニットの下流に結合された酸化ユニットを含むことが可能である。酸化ユニットは、プロセス流れ中の有機還元硫黄汚染物質を酸化して、下流での処理を促進することが可能である。脱塩ユニットは、酸化ユニットの生成物を転換して、鉱物流れを生成することが可能である。いくつかの例では、プロセス流れは、エチレン生産施設又は石油精製所のような工業操業所からの使用済苛性アルカリ流れであってもよい。脱塩ステップにおいて水酸化ナトリウム流れのような新鮮な苛性アルカリ流れを単離し、工業操業所に戻して利用することが可能である。 (もっと読む)


【課題】電気軟化装置を含む簡易な装置で、pH調整や流量調整を行うことなく軟水、硬水及び純水を得ることができる生活用水製造方法及び装置を提供する。
【解決手段】原水を逆浸透膜装置10で処理して濃縮水と透過水を得る脱塩工程と、電気軟化装置20の軟化室に原水を通水し、置換室に逆浸透膜装置10から得られる濃縮水を流入し、軟化室から軟水を、置換室から硬水を得る硬度調整工程と、を有し、少なくとも原水、軟水及び透過水を生活用水として使用点に供給する生活用水供給方法及び装置。 (もっと読む)


【課題】濾過膜が有する問題点を生じることなく、薬剤を用いずに熱機器の腐食を抑制する。
【解決手段】熱機器としてのボイラ2への給水ライン3に、前記ボイラ2への給水中にイオンとして存在する前記ボイラ2の伝熱面の腐食促進成分を除去し、前記ボイラ2への給水中に非イオンとして存在する前記ボイラ2の伝熱面の腐食抑制成分を通過させる電気透析装置4を設けたことを特徴とする。 (もっと読む)


【課題】シリコンウエハなどの電子材料基板上に付着した有機汚染物などを洗浄液で効果的に除去でき、かつ洗浄液の品質寿命を長く維持できる洗浄システムを提供する。
【解決手段】硫酸溶液を含む洗浄液16によって被洗浄材を洗浄する洗浄槽1と、過硫酸溶液を生成する過硫酸溶液生成手段20と、過硫酸溶液を前記洗浄液に添加する過硫酸添加手段(開閉弁14、過硫酸添加ライン15)とを備える。過硫酸溶液生成手段20は、好適には過硫酸塩溶液を用いた電気透析装置により構成し、洗浄液の液温は80〜200℃に調整し、硫酸濃度を8〜17Mに維持するのが望ましい。洗浄液である硫酸に過硫酸溶液を添加することで高度な洗浄が可能になり、洗浄プロセスのスループットを向上できる。さらに洗浄液ライフも長くできる。 (もっと読む)


【課題】濃縮室及び脱塩室にてスケールの発生を防止し、長期間安定的に運転することのできる電気脱イオン装置を提供する。
【解決手段】電気脱イオン装置1は、陰極11と陽極12との間に、複数のアニオン交換膜13とカチオン交換膜14とを交互に配列して濃縮室15と脱塩室16とを交互に形成してなり、濃縮室15にバイポーラ膜20を設けて濃縮室15内を陰極側と陽極側とに区画してなり、脱塩室16を被処理水の流れ方向の上流側から第1層16A及び第2層16Bの少なくとも二層に分割してアニオン交換体30Aとカチオン交換体30Bとからなるイオン交換体30を充填し、第1層16Aに充填されるイオン交換体30は、カチオン交換体30Bを50体積%以上含んでおり、第2層16Bに充填されるイオン交換体30は、アニオン交換体30Aを50超〜80体積%含む。 (もっと読む)


【課題】電気透析処理を用いる微粒子状の水不溶性又は水難溶性の塩又は塩基の製造方法を提供すること。
【解決手段】陰イオン交換膜と陽イオン交換膜とを用いた電気透析処理により水不溶性又は水難溶性の塩又は塩基を製造するに際し、アルカリ金属塩及び/又はアンモニウム塩の水溶液を濃縮室液として使用する微粒子状の水不溶性又は水難溶性の塩又は塩基の製造方法である。 (もっと読む)


スケール生成能が低い電気化学的処理装置が開示されている。この装置は、アニオン交換及びカチオン交換の層化を目的とした各種の構成を有している。この処理装置は、更に、サイズの不揃いなイオン交換樹脂ビーズを含有してなるか及び/又は支配的な抵抗を与え、その結果、装置全体を通して均一な電流の分布を生じる、少なくとも一つの区画室を備えてなる。
(もっと読む)


【課題】原水に含まれるイオンだけを材料に連続式で電気分解しても、原水の水質の変動によって十分にスケール防止効果や殺菌効果の強い酸性電解水が得られないことがある。原水に含まれるイオンだけを材料にして、水質の変動によらず常にスケール防止効果や殺菌効果の強い酸性電解水を得ることを目的とする。
【解決手段】イオン交換樹脂などの吸着手段2を用いて目的とするイオン、例えば塩化物イオンを吸着したのちに電気分解して、イオン交換樹脂の再生と濃縮されたイオンの脱着を同時に行う。脱着された塩化物イオンを陽極側電解槽5で電気分解することにより強い殺菌力とスケール防止効果を持つ強酸性電解水を間欠的に供給することができる。 (もっと読む)


【課題】ろ材やろ過膜の交換時の問題点がなく、交換時に周囲を残留水で濡らすことなく、容易に短時間に交換作業を行うことができる浄水器を提供する。
【解決手段】浄水器内に、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜のうちのいずれかの膜が組み込まれたろ過膜エレメント60を設置してなる浄水器であって、浄水器の外形が実質的に浄水器本体1と浄水器蓋部2とからなり、ろ過膜エレメント60を収納する容器本体51が浄水器本体内に設置され、容器本体51の上部に着脱可能な容器蓋52が配設されている。 (もっと読む)


【課題】電気式脱イオン水製造装置における硬度スケール析出の問題を解消し、かつ、アニオン交換樹脂がSiO2 形になり電気抵抗が上昇することを防止できるようにした、長期間安定して連続使用可能な脱イオン水製造装置を提供する。
【解決手段】直流電圧が印加される電極間に、カチオン交換体が充填され導入されてくる被処理水を脱カチオン水と濃縮水とに分離する脱塩室を形成した電気式脱カチオン水製造手段と、該電気式脱カチオン水製造手段からの流出水が通水されアニオン交換体が充填された少なくとも一つのアニオン交換手段と、を有することを特徴とする脱イオン水製造装置。 (もっと読む)


【課題】電流効率の低下現象を起こすことなく、硬水中の硬度成分を目的に応じて所望の軟化率から顕著に高い軟化率まで自在に除去できる電気軟化装置、軟化装置及び軟水製造方法を提供すること。
【解決手段】陽極室と陰極室の間に一価カチオン選択透過膜とカチオン交換膜を交互に配置してその間を通水室とし、一価カチオン選択透過膜の陰極側に位置する通水室(軟化室)に硬度成分を含む被処理水を、一価カチオン選択透過膜の陽極側に位置する通水室(置換室)に一価カチオンを含む置換水を通水し、直流電位を印加して被処理水中の硬度成分を置換水中の一価のカチオンと置換させる。 (もっと読む)


【課題】 スケール成分を選択的かつ十分に除去することができる複合ナノろ過膜、及び海水等の原水を蒸留法によって淡水化する際にスケールの発生を効果的に防止し、淡水を高回収率でかつ安定的に得ることができる造水方法を提供する。
【解決手段】 薄膜とこれを支持する多孔性支持体とからなる複合ナノろ過膜において、前記薄膜は、単環性多官能アミン化合物A及び非縮合二環性多官能アミン化合物Bと、2価以上の多官能酸ハロゲン化物との重合反応によって得られる構造単位を有するポリアミド系樹脂を含むことを特徴とする複合ナノろ過膜。 (もっと読む)


【課題】本発明は高い温度で使用可能なプロトン伝導性材料、およびそのプロトン伝導性材料を物性が安定した、簡便な工程で製造する方法を提供すること。
【解決手段】硫酸およびリン酸のうちから選ばれる少なくとも1つの酸と、アミノ基(NH2−)、モノ置換アミノ基、ジ置換アミノ基、および含窒素複素環基のうちから選ばれる少なくとも1つの含窒素塩基性有機基を有する下記一般式(1)で表されるシラン化合物とを含む溶液を、前記酸の総モル数と前記含窒素塩基性有機基に含まれる窒素原子の総モル数との比(酸/窒素原子)が0.6〜1.5の範囲となるように混合し、ゲルを作製し、前記ゲルを乾燥することにより得られるポリシロキサン系構造体。(AR')n-Si-(OR)4-n ・・・・(1) (もっと読む)


【課題】水中のリン分を吸着剤により除去する工程(吸着工程)、及び吸着剤の性能が劣化すると、アルカリを通水してリン酸イオンを脱着する工程(脱着工程)、及び脱着液のアルカリに石灰を加えてリン酸カルシウムを晶析させる工程(晶析工程)、及び晶析したリン酸カルシウムを固液分離する工程(固液分離工程)からなるリン除去システムを安定に運転し、リンを低濃度まで除去可能とし、ランニングコストの安価なイオン処理装置及び方法を提供することを目的とする。
【解決手段】少なくとも、吸着剤が充填されたイオン吸着手段、該吸着剤と接触した脱着液から脱着したイオンを晶析する晶析手段、晶析物の固液分離手段、及び固液分離手段の洗浄手段を有することを特徴とするイオン処理装置。 (もっと読む)


【課題】BOD成分と多価無機カチオンを含む被処理水をRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、バイオファウリングを防止すると共に、RO濃縮水のCOD値を効率的に低減して、RO濃縮水の排水処理等への悪影響を防止する。
【解決手段】被処理水に、生分解性のスケール防止剤を添加すると共に、アルカリを添加してpHを9.5以上に調整してRO膜分離装置4に通水する。RO濃縮水を生物処理する。RO給水のpHを9.5以上にすることによりRO膜分離装置でのバイオファウリングを防止し、非イオン性界面活性剤の膜面付着を防止してフラックスの低下を防止する。スケール防止剤の添加により、高pH条件での炭酸カルシウムスケールによる膜面閉塞を抑制する。生分解性のスケール防止剤を用い、濃縮水中を生物処理することにより濃縮水中のスケール防止剤を生分解してTOCを低減することができる。 (もっと読む)


【課題】有機物含有排水をRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、バイオファウリングを防止すると共に、RO濃縮水のCODを含むTOC値を効率的に低減して、RO濃縮水の排水処理等への悪影響を防止する。
【解決手段】有機物含有排水に、スケール防止剤を添加すると共に、アルカリ剤を添加してpHを9.5以上に調整してRO膜分離装置2に通水する。RO濃縮水をオゾン反応塔4でオゾン酸化処理する。RO給水のpHを9.5以上にすることによりRO膜分離装置2でのバイオファウリングを防止し、非イオン性界面活性剤の膜面付着を防止してフラックスの低下を防止する。スケール防止剤の添加により、高pH条件での炭酸カルシウムスケールによる膜面閉塞を抑制する。RO濃縮水中に濃縮されたCODを含むTOCをオゾンにより酸化分解除去する。 (もっと読む)


【課題】高いプロトン伝導性と高いアルコール非透過性を併せ持つ直接液体型燃料電池隔膜を得る。
【解決手段】a)1個の重合性基、少なくとも1個のメチル基、及び少なくとも1個の水素原子がベンゼン環に結合してなり、且つ上記メチル基のうち1個は前記重合性基に対してパラ位に結合してなる単環式芳香族系重合性単量体、b)架橋性重合性単量体、及びc)重合開始剤、を少なくとも含む重合性組成物を多孔質膜と接触させて前記重合性組成物を多孔質膜の有する空隙部に充填させた後、前記重合性組成物を重合硬化させ、次いで前記単環式芳香族系重合性単量体に由来するベンゼン環にカチオン交換基を導入することにより直接液体型燃料電池用隔膜を製造する。単環式芳香族系重合性単量体としてはp-メチルスチレンが好ましい。 (もっと読む)


【課題】コンパクトで、また浄水器の使用寿命を長くする浄水器付き電気温水器を提供すること。
【解決手段】浄水器と、前記浄水器へ原水を導入する第1の流路と、流体入口部と流体出口部とを有する貯湯タンクと、前記浄水器で浄化した浄水を前記貯湯タンクの流体入口部へ導入する第2の流路と、前記流体入口部から前記貯湯タンク内に流入した浄水を加熱する第1の加熱装置と、前記流体出口部に接続され前記貯湯タンク内の加熱された浄水を吐水する第1の吐水手段と、前記第1の流路の途上で分岐された分岐流路と、前記分岐流路の途中において、前記貯湯タンク内を通過し前記貯湯タンク内の浄水と前記分岐流路内の原水との間で熱交換する熱交換手段と、前記分岐流路の前記熱交換手段より下流側に設けられた第2の吐水手段と、を備えたことを特徴とする浄水器付き電気温水器を提供する。 (もっと読む)


【課題】アルミナ(Al)の析出を回避し、NaCO及び重金属の蓄積を回避しつつ、小型な装置で、アルミニウムのアルカリエッチング液に含まれるアルカリを回収する方法を提供する。
【解決手段】第一工程としてアルミニウムのアルカリエッチング液を第一電解槽に導き、イオン交換膜を通してNaを陰極側に分離し、前記Naを陰極反応で生成されるOHと結合させてNaOHを得る。次いで第二工程として、前記第一工程における陽極側の液を中和槽6に供給し、併せて第二電解槽9の陽極液を前記中和槽に供給して中和槽において第一電解槽の陽極液中のAlOイオンを前記第二電解槽の陽極反応で生成されるHイオンで中和してAl+イオンをAl(OH)として分離した後、この液を第二電解槽に導き、イオン交換膜を通してNa+を陰極側に分離し、前記Na+を陰極反応で生成されるOHと結合させてNaOHを得る。 (もっと読む)


141 - 160 / 226