説明

Fターム[4D047AB00]の内容

深冷分離 (3,528) | 分離、精製物 (601)

Fターム[4D047AB00]の下位に属するFターム

Fターム[4D047AB00]に分類される特許

41 - 60 / 79


【課題】セメント原料の焼成に伴う燃料燃焼により発生する二酸化炭素、及びセメント原料の脱炭酸反応により発生する二酸化炭素を流動層セメント焼成設備の外方へ排出する虞がなく、さらには、この二酸化炭素を排ガスから分離・回収することができるセメントクリンカの製造方法及び製造装置を提供する。
【解決手段】本発明のセメントクリンカの製造方法は、サスペンションプレヒータ1にて予熱・仮焼された粉状のセメント原料Rを流動層セメント焼成設備2に供給し、流動層焼成炉12にて燃料及び酸素ガスの燃焼熱によりセメント原料R’を焼成しセメントクリンカとするとともに、この流動層焼成炉12内に生じた高濃度の二酸化炭素を含む排ガスを流動層セメント焼成設備2にて循環させる。 (もっと読む)


【要約】 アンチサブリメーションによってガスストリームからCO2を除去する方法は、a)CO2を含有するガスストリームを凍結容器に導入する工程;b)凍結容器において、少なくとも一部のガスストリームの温度を、アンチサブリメーションによって固体CO2が生ずる温度に低下させる工程;c)CO2が奪われたガスストリームを凍結容器から排出する工程;及びd)生じた固体CO2を回収する工程を含んでなり、工程b)におけるガスストリームの圧力が大気圧よりも高いことを特徴とする。ガスストリームからCO2を除去するためのアンチサブリメーションシステムは、ガスストリームを受け取るように構成された凍結容器(101)であって、凍結容器における少なくとも一部のガスストリームの温度を、アンチサブリメーションによって固体CO2が生ずる温度に低下させるように構成された低温冷凍装置(107)を含んでなる凍結容器;及び凍結容器に供給されるガスストリームの圧力を上昇させるように構成された圧縮器(108)を含んでなる。
(もっと読む)


CO液化プラントにおいて合成ガス流を富水素(H)蒸気流及び液体二酸化炭素(CO)流に分離するプロセスであって、(A)10〜120bargの範囲の圧力を有する合成ガス流を、CO液化プラントの圧縮システムに供給し、それによりその圧力を150〜400bargに増加させ、その結果生じる高圧(HP)合成ガス流を外部冷却材で冷却して圧縮熱の少なくとも一部分を除去するステップ;(B)HP合成ガス流を、後に本プロセスで生成される複数の冷媒流と熱交換させながら熱交換器システムに通すことにより、HP合成ガス流を−15〜−55℃の範囲の温度に冷却するステップ;(C)ステップ(B)で形成された冷却されたHP合成ガス流を、熱交換器システムと実質的に同じ圧力で稼動される気液分離器容器に直接的又は間接的のいずれかで送り、高圧(HP)富水素蒸気流を分離器容器の最上部から取り出し、液体CO流を分離器容器の底部から取り出すステップ;及び(D)ステップ(C)からのHP富水素蒸気流をターボ膨張システムに供給し、そこで富水素蒸気流が直列ターボ膨張器の各々において等エントロピー膨張にかけられ、そのため富水素蒸気流が、直列ターボ膨張器から低減された温度及び連続的に低減された圧力で取り出され、直列ターボ膨張器の各々における富水素蒸気の等エントロピー膨張が動力を発生させ、それによりCO液化プラントの構成部分である機械を駆動し、及び/又は発電機のオルタネータを駆動するステップを含むプロセス。 (もっと読む)


【課題】液封を安定して確保できると共に液体オゾンの液面の気化部内への進入を確実に防止できるオゾン濃縮装置を提供する。
【解決手段】分離部6と気化部5との差圧が、予め設定した設定値Pとなるように制御手段12により制御するため、圧力変動が生じても分離部6と気化部5の間が一定の差圧とされ、従って、液封を安定して確保できると共に、気化部5の入口5aが、分離部6の分離境界面Aの高さに、差圧設定値Pに相当するヘッド高さhを加えた高さより高い位置に位置するようにしているため、液体オゾンの自由液面高さより上に位置し、従って、液体オゾンの液面の気化部5内への進入を確実に防止できる。 (もっと読む)


ガス混合物から二酸化炭素を回収する方法であって、二酸化炭素、水蒸気及び1以上の軽質ガスよりなるガス混合物を前処理システムにおいて前処理して、冷却したガス混合物を形成し、冷却したガス混合物を分別して、二酸化炭素よりなるボトムスフラクション及び二酸化炭素及び軽質ガスよりなるオーバーヘッドフラクションを回収し、オーバーヘッドフラクションを、二酸化炭素に対して選択性の膜の上を通過させて、軽質ガスよりなる残留ガスから二酸化炭素透過物を分離し、二酸化炭素透過物を前処理システムに再循環し、及びボトムスフラクションの少なくとも一部を、精製した二酸化炭素製品ストリームとして回収することを含む二酸化炭素の回収法を開示する。
(もっと読む)


ガス流れ(2)からCOを捕捉する昇華防止システム(1)の凍結容器(3)を動作する方法である。凍結容器(3)内に存在するCO氷の解凍時に、凍結容器(3)からCOガスを取り除く。また、ガス流れ(2)からCOを捕捉する昇華防止システム(1)である。この昇華防止システムは、凍結容器(3)と、この凍結容器からCOガスを取り除く手段(7)とを包含する。前記手段は、前記凍結容器内に存在するCO氷の解凍時にCOガスを取り除く。更に、煙道ガスの温度を下げる1つ又は複数の熱交換器と、前記煙道ガス中の汚染物質を取り除く1つ又は複数のスクラバーとを包含する煙道ガス処理システムである。この煙道ガス処理システムは、更に、前記昇華防止システムを包含する。
(もっと読む)


【課題】液化天然ガスを製造するための装置及び方法を提供する。
【解決手段】液化プラントは、天然ガスパイプライン等の未浄化天然ガス源に減圧ステーションで連結されていてもよい。ガスの一部を引き出しプロセス流154及び冷却流152に分ける。冷却流152はターボ膨張器156を通過し、仕事出力を発生する。この仕事出力でコンプレッサー158を駆動し、プロセス流154を圧縮する。圧縮されたプロセス流は、膨張させた冷却流等によって冷却される。冷却され圧縮されたプロセス流を第1部分172及び第2部分170に分ける。第1部分172を膨張させ、天然ガスを液化し、セパレーター180で液体天然ガスから蒸気を分離する。冷却され圧縮されたプロセス流の第2部分170もまた膨張され、圧縮されたプロセス流の冷却に使用される。水除去サイクル及び二酸化炭素除去サイクルを含む追加の特徴及び技術を液化プロセスに組み込んでもよい。 (もっと読む)


本発明は、気体状供給源から高純度二酸化炭素を回収する方法、およびその使用に関する。より詳しくは、本発明は、窒素、酸素、窒素酸化物、硫黄化合物および揮発性有機汚染物、特にベンゼン、を実質的に含まない高純度二酸化炭素の製造に関する。本発明は、二酸化炭素原料流からベンゼンを除去する方法ならびに食品における該高純度二酸化炭素の使用にも関する。
(もっと読む)


【課題】簡易な構成により低コストでドライアイスを容器の外部へ搬出することができ、二酸化炭素の回収効率を向上することができる二酸化炭素回収装置を提供すること。
【解決手段】二酸化炭素を含む排ガスを冷却することにより当該二酸化炭素を固化させてドライアイスとし、当該ドライアイスを回収することにより排ガスから二酸化炭素を回収するサブリメータ40であり、二酸化炭素の固化温度以下の冷媒を流す伝熱管46を内部に有し、排ガスと冷媒とを間接熱交換させる容器41を備え、容器41に連通して設けられ、当該容器41内で生成されたドライアイス60を当該容器41から搬出するスクリューフィーダ装置100を備えた。 (もっと読む)


【課題】二酸化炭素回収システムの実用化に向けてより有用なデータを取得することができる二酸化炭素回収システムの試験装置及び試験方法を提供すること。
【解決手段】二酸化炭素回収システムの試験装置10を、火力発電所100から排出された排ガスを液体冷媒22中に導入することによって、排ガスに含まれる水分を固化して液体冷媒22に捕集させる第1の水分除去装置20と、第1の水分除去装置20に接続され、第1の水分除去装置20から排出された排ガスを冷却して排ガスに含まれる二酸化炭素ガスを固化する二酸化炭素固化装置30と、火力発電所100と第1の水分除去装置20との間に設けられ、火力発電所100から第1の水分除去装置20に送られる排ガスから、この排ガスに含まれる水分の一部を予め除去する第2の水分除去装置40とを備える構成とした。 (もっと読む)


本発明は、一酸化二窒素を含有するガス混合物G-Iを少なくとも部分的に凝縮して液体組成物Z-1を得て、かつ前記組成物Z-1とガス混合物S-1を接触させて組成物Z-2とガス混合物S-2を得ることから成る一酸化二窒素を含有するガス混合物を精製する方法に関する。 (もっと読む)


【課題】オゾン層への影響や反応性の高い動作流体に依存することなく、動作流体のエネルギー損失を抑制してタービンを駆動することができ、放射性廃棄物の問題もなく、燃料の燃焼に伴い排出される二酸化炭素の処理も容易となる原動機システムを提供する。
【解決手段】原動機システム1Aは、燃料を燃焼する燃焼部20と、燃料の燃焼熱により動作流体を超臨界状態にする超臨界形成部21と、超臨界形成部とタービン部10を接続して動作流体をタービン部に導入すると共に動作流体を再び超臨界形成部に戻すことにより臨界形成部とタービン部との間で動作流体を循環させる流体循環部30と、動作流体を冷却する凝縮器91と、燃焼部へ燃焼用の酸素を供給する液体酸素供給部50と、液体酸素供給部から燃焼部へ供給される酸素の冷熱を用いて燃焼部から排出される排気ガスを冷却し、排気ガス中の二酸化炭素と水を分離する熱交換分離部60を備える。 (もっと読む)


液体中のオゾン濃度を増大するための方法は、オゾンを有しているガスを提供する工程と、このオゾン含有ガスを液体に導入する工程であって、この液体およびオゾンの組み合わせがオゾンの臨界温度の約0.8倍と約1.5倍との間の温度を有する工程と、オゾンの臨界圧力の約0.3倍〜約5倍までこの液体状のオゾン含有ガスの圧力を等温的に増大し、それによってこの液体中のオゾン濃度を増大する工程とを含み得る。この温度は、絶対単位(ケルビンまたはランキン)で表される。この方法は、ガスからオゾンを除去するため、またはオゾンを精製するために用いられ得る。高いオゾン濃度を有している液体を基質のオゾン分解に用いてもよい。 (もっと読む)


【課題】酸素及び一酸化炭素を含有しない、高純度の不活性ガスを効率的かつ安価に得ることができる不活性ガスの製造方法を提供すること。
【解決手段】不活性ガスの製造方法は、触媒の存在下において炭化水素を所定の温度で加熱して分解することにより、炭化水素から水素(H2)を分離して析出炭素を生成する析出炭素生成工程と、触媒の存在下において析出炭素と空気とを接触させて所定の温度で加熱することにより、析出炭素と空気とを反応させ、酸素(O2)及び一酸化炭素(CO)を含有しない、窒素(N2)及び二酸化炭素(CO2)からなる不活性ガスを生成する不活性ガス生成工程とを有する。 (もっと読む)


(a)固定床(101、102、103)形態の多孔質体をCOの昇華温度より低い温度に冷却して冷多孔質体を得る工程、(b)COを含有するガス原料流(120)及び1種以上の他のガス化合物を該冷多孔質体の表面と接触させて固体COを含有する多孔質体及びCOの枯渇した流出ガス(124)を得る工程、及び(c)該固体CO含有多孔質体をCOの昇華温度より高い温度を有する流体CO流(130)に曝して固体COを除去し、これにより流体CO(136)及び温多孔質体を得る工程を含むガス原料流からのCOの分離方法。 (もっと読む)


本発明は、次の連続した工程:a)予備処理工程;b)圧縮工程;c)精製CO2富化ガス流れを液体、ガスまたは超臨界の状態で回収する工程;を含むCO2、並びに水、SOxおよびNOxから選択される少なくとも1つの不純物を含む供給ガス流れの精製方法に関する。本発明は、精製工程が水の少なくとも部分的な除去を与える吸着特性を有するNOxおよび/またはSox−中性吸着材の少なくとも第1床が用いて、工程a)とb)の間でなされることを特徴とする。 (もっと読む)


本発明は、CO2および少なくとも1つの不純物を含む供給流れの精製方法に関し、次の連続する工程:a)予熱する工程;b)圧縮工程;c)前記圧縮ガス流に含まれ、窒素、酸素、アルゴンおよび希ガスから選ばれる少なくとも1つの不純物の除去を冷却サイクル、すなわち温度<5℃、好ましくはゼロを下回る、中で分離器と組み合わされる交換器を用いることを含む工程;d)CO2富化精製ガス流れが液体、ガスまたは超臨界の形態で回収する工程を含む。本発明は、精製工程が窒素酸化物および水から選択される少なくとも1つの不純物を少なくとも部分的に除去するために工程a)とc)の間で遂行される。 (もっと読む)


二酸化炭素を含有する流体から二酸化炭素を分離するためのプロセスであって、圧縮機中で該流体を圧縮し、圧縮された流体を作る工程と、該圧縮された流体の少なくとも一部を乾燥し、圧縮されかつ乾燥された流体を作る工程と、該圧縮されかつ乾燥された流体の少なくとも一部を冷却し、圧縮されかつ乾燥されかつ冷却された流体を作る工程と、該圧縮されかつ乾燥されかつ0℃未満に冷却された流体を、二酸化炭素リッチな流と、二酸化炭素が希薄な流と、該二酸化炭素リッチな流よりも低く、かつ該二酸化炭素が希薄な流よりも低い二酸化炭素純度を持つ少なくとも1つの中純度液体流とに分離する工程と、少なくとも1つの中純度の液体流を膨張させ、少なくとも1つ膨張された流を作る工程と、少なくとも1つの膨張された流を用いて、該膨張されかつ乾燥された流体を冷却する工程と、該膨張された流の少なくとも一部をリサイクルする工程とを含むプロセス。
(もっと読む)


二酸化炭素を煙道ガスストリームから回収する方法は、大気圧より高いガス圧力のストリームを、アンモニウム、炭酸および重炭酸イオンを含有する水性溶媒系と10℃より高い温度で接触させて、ストリームからCOを吸収し、吸収したCO(炭酸塩、重炭酸塩およびCO(水性))を含有する溶媒をCO−希薄煙道ガスから分離して、COおよび/または重炭酸塩に富む溶媒ストリームを形成することを含む。第2の態様において、アンモニアを溶解する水と接触させることによりCO−希薄煙道ガスを冷却し、該溶解したアンモニアを該溶媒系に戻して再循環する。装置も開示されている。
(もっと読む)


塩素含有廃ガスストリームから塩素を回収するための3段階の方法であって、第1段階Aにおいて、廃ガスストリームを圧縮し、第2段階B)において、第1段階からの廃ガスストリームを冷却し、そこに含まれる塩素の幾らかまたは全てを凝縮により、廃ガスに含まれる他の凝縮性または可溶性の成分の一部と共に分離し、それにより生成する凝集液を、凝縮領域の下方に設けた気体−液体接触領域において、第2段階に流入する廃ガスストリームと向流で接触させ、第3段階Cにおいて、第2段階からの凝縮液を、蒸留塔にて、塩素に富む液溜めストリームと気体を含む液体の低塩素塔頂ストリームとに分割し、塩素を得るために、塩素に富む液溜めストリームを処理する。
(もっと読む)


41 - 60 / 79