説明

Fターム[4D061EB34]の内容

電気、磁気による水処理 (36,536) | 電気処理方式 (14,564) | 電極の構造 (999) | 同心状中空電極対 (115)

Fターム[4D061EB34]に分類される特許

41 - 60 / 115


【課題】浴水を清浄に保ち易い浴水汚れ分解装置を得ること。
【解決手段】浴槽150から浴水150aを取り出して加熱した後に浴槽に戻す追焚き機能付き給湯機130での追焚き用の配管(戻り管70b)内に配置されるプラス電極およびマイナス電極と、これらプラス電極とマイナス電極とに電圧を印加する電源部91とを用いて浴水汚れ分解装置100を構成し、電源部からプラス電極とマイナス電極とに所定の電圧を印加することで該プラス電極と該マイナス電極との間に生じる放電により、浴水中の汚れを分解する。 (もっと読む)


【課題】 この発明は、電解水生成装置から生成されるアルカリ電解水および酸性電解水からなる毛髪処理用電解水に関する。
【解決手段】毛髪処理用電解水は、電解水生成装置で生成したpH9〜11.5でORP−400mV以下に設定されたアルカリ性電解水と、pH3〜5.5に設定された酸性電解水とからなり、前記アルカリ性電解水をパーマネント、ヘアカラー、ヘアケアなどの毛髪施術に際しての毛髪の塩結合を切断する前処理剤とし、前記酸性電解水を前記毛髪を等電点に戻し塩結合の再結合を促す後処理剤としてなることを特徴とする。 (もっと読む)


【課題】 電気分解によりアルカリイオン水を得る際に酸性イオン水を減少させる。
【解決手段】 正電極15及び負電極16に挟まれて陽イオン交換膜12が設けられ、負電極16と陽イオン交換膜12の間の陰極側の通路に水道水を流通させる経路21を備え、陽イオン交換膜12を正電極15に密着して設け、正電極15側の陽イオン交換膜12に対してはHイオンが透過する湿潤状況にして水素ガスの気泡を負電極16に生成し、陽イオン交換膜12に水酸イオンOH-を透過させずに酸素イオンの発生を抑制して酸性イオン水を減少させる。 (もっと読む)


【課題】水素ガスの気泡を極力小さい状態で水素含有電解水に含ませることができる水素含有電解水生成装置を提供する。
【解決手段】正電極15及び負電極16に挟まれて陽イオン交換膜12が設けられ、負電極16と陽イオン交換膜12の間の陰極側の通路に水道水を流通させる経路21を備え、負電極16がメッシュ状に形成され、負電極16に生成される水素ガスの泡のぬれ角を小さくして泡を小さい状態で離脱させる。 (もっと読む)


電解セル(18、50、80、406、552、708、804)、電解セル(18、50、80、406、552、708、804)を通過する液体流路及びインジケータライト(414、416、594、596)を含む装置(10、400、500、500′、700、800、980)が提供される。インジケータライト(414、416、594、596)は、電解セル(18、50、80、406、552、708、804)の作動特性の関数として点灯され、ライト(414、416、594、596)から放出される光束(522)が流路の少なくとも一部分に沿って液体を照らす。
(もっと読む)


フィルタを用いるバラスト水管理システムのような船上水管理システムを補助するため、塩素系生物付着防除サブシステムが利用される。生物付着防除システムは、付着防止を促進し、生物付着によるフィルタの目詰まりを軽減する機能を果たすことが可能であり、これによって、バラスト水処理管理システムの効率及び有効性が向上する。生物付着防除システムの付着防止剤は、主水管理システムによって濾過又は処理される海洋生物の密集したコロニーをばらばらにする。 (もっと読む)


【課題】強酸化水及びアルカリ水の製造装置を提供する。
【解決手段】無添加の真水である被処理水が収容されている処理容器に接地電極と一対の印加電極を配置し、且つ、前記接地電極が配置されている領域と前記両印加電極が配置されている領域とを半透過性部材により離隔し、更に接地電極と、両印加電極間の導電性を増すために離隔された中間とにバイポーラ電極を配置した交流による強アルカリ水及び強酸化水の製造装置とするものである。 (もっと読む)


【課題】電極自体と(外部)接続用端子との間の導電性に優れると共に従来よりも熱的に安定な電極構造を提供する。
【解決手段】電極1Aとその制御用機器とを電気的に接続する接続用端子2とを具備し、前記電極1Aと接続用端子2との相互間にはイオン液体3を介在させるようにした。ここでイオン液体3は室温でも液体で存在する塩であって、電流を流すことができ、100℃以下での体積変化が小さいものである。電極1Aと接続用端子2とがイオン液体3との界面を介して電気が流れることとなる。 (もっと読む)


【課題】 加圧機器や空気ノズルを用いることなく浮上分離処理を実施できるようにする。
【解決手段】 円筒状の外周電極5aと、その軸心位置に配した中心電極5bとの間に流路25を備えたノズル22を形成する。浮上分離槽4の被処理水入口4aに、ノズル22を設置して、ボイラ1の燃焼排ガス2を水洗浄することで生じる洗浄排水3を予め沈殿槽12で沈降分離処理した後の沈降分離処理水3aを導く沈降分離処理水回収ライン17を接続する。外周電極5aと中心電極5bに電源を接続する。沈降分離処理水3aをノズル22の流路25を通して浮上分離槽4へ流入させるときに、電源6より高速高電圧パルスを印加する両電極5a,5b間で高速パルス放電を行わせることで、浮上分離槽4に流入する沈降分離処理水3a中に微小気泡7を発生させ、この微小気泡7により、浮上分離槽4に貯留された沈降分離処理水3a中の懸濁物を浮上分離させる。 (もっと読む)


入口(12、63、65)、出口(36、63、65)、および同軸円筒状の内側電極および外側電極(20、22)を含む電解セル(10)が提供される。内側電極と外側電極(20、22)との間に円筒状のイオン選択性膜(18)が置かれ、この膜(18)の対向する側に、第1および第2の電解反応室(14、16)が形成される。第1および第2の室(14、16)に沿った流体流路は、入口(12、63、65)を通過する結合入口流路(70)および出口(36、63、65)を通過する結合出口流路(72)として合流する。
(もっと読む)


液体リザーバ(12,52,88,510)と、液体出口(14,74,89,508)と、電解セル(18,50,80,406,552,708,804)と、電源(32,402,542)と、直流・直流変換器(1004)とを含む手持ち式スプレーボトル(10,400,500,500’)が提供される。電解セル(18,50,80,406,552,708,804)は、スプレーボトル(10,400,500,500’)によって支えられ、リザーバ(12,52,88,510)と液体出口(14,74,89,508)との間に流体的に連結されている。電源(32,402,542)は、スプレーボトル(10,400,500,500’)によって支えられ、電圧出力を有する。直流・直流変換器(1004)は、電圧出力と電解セル(18,50,80,406,552,708,804)との間に連結され、そして電解セル(18,50,80,406,552,708,804)を活性化するため電源(32,402,542)の電圧出力より大きいステップアップ電圧を供給する。
(もっと読む)


イオン選択性膜(58,208)によって分離されたアノードおよびカソード(60,62,84,86,100,104,108,204,206)を有する電解セル(18,50,80,406,552,708,804)の中に水を通す方法および装置(10,400,500,500’,700,800,980)が提供される。カソードはアノードより大きい表面積を有している。この方法は、陽極液および陰極液(70,72,76)を生成するため、アノードおよびカソード(60,62,84,86,100,104,108,204,206)に第1の極性(300)で活性化電圧を印加するステップと、アノードまたはカソード(60,62,84,86,100,104,108,204,206)のうち少なくとも一つへの堆積物を減らすため、短期間(302)に亘って活性化電圧を第2の極性へ一時的に反転させ、その後、活性化電圧を第1の極性(300)へ戻すステップと、印加ステップおよび反転ステップの間に、単位時間当たりの陰極液の供給が陽極液の供給より多量である実質的に定量供給のアノード室(54)からの陽極液およびカソード室(56)からの陰極液を吐出するステップと、を含む。
(もっと読む)


【課題】本発明は容器10の清掃及び容器10内の水の平均還元電位の測定を目的とする攪拌を行う場合に何らの支障とならず、これらの作業を円滑に実現し得る形状の電極を具備している還元水生成装置1の構成を提供すること。
【解決手段】水を収容する容器中に、一対の電極21、22を備え、当該電極に対する直流電源を備えている還元水生成装置1において、一対の電極21、22が容器10内の底部から上側に突設されずに、該底部側において側壁側に延伸した状態にある板状体表面に形成されていることに基づき、前記課題を達成することが可能である還元水生成装置1。 (もっと読む)


【課題】高温下における電気脱塩処理により、被処理水に含まれる高濃度の注入薬剤の大部分を保持しつつ再利用するとともに、被処理水に含まれる不純物は除去することで、不純物イオン脱塩浄化負荷とアンモニア消費、および熱損失との少ない水処理が実現でき、原子力発電プラントの効率的な運用を可能とする。
【解決手段】オゾン含有ガスを含んだ被処理水を少なくとも1つ以上の反応槽7に導入し、前記反応槽7において被処理水の少なくとも1種類以上の含有成分を酸化処理する水処理装置において、オゾン発生器2で生成したオゾンと被処理水を吸引し反応槽へ送出する加圧過流ポンプ3と、前記反応槽7の下方に設けられた調圧部材6と、前記加圧過流ポンプ3と前記調圧部材6との間に設けられ前記オゾン含有ガスを含んだ被処理水の加圧を行う加圧配管4と、を具備する。 (もっと読む)


【課題】 バラストタンク、工場の冷却設備など海水を利用する設備において、次亜塩素ソーダ濃度を環境に影響が少ない濃度で適用しつつ、確実に貝類や海藻類を死滅させる。
【解決手段】 所定間隔を空けて近接させて電極対とした第1の導体10および第2の導体20と、電極対間にかける電圧・電流を制御する電圧電流制御部40とを備え、電極対間にある海水を電気分解して発生させる次亜塩素ソーダの発生量を制御するとともに、電極対間にある海水に存在する海洋微生物対して電気ショックを与えて死滅させる。なお、電極の例として、第1の導体10が外側に位置する中空円筒体であり、第2の導体20が内側に位置する中空円筒体であり、電極対が二重構造の筒状の電極対となっているものとする。 (もっと読む)


【課題】パルス電源とパルス電圧が印加される電極対との電気特性のマッチングを良好とし、パルス電源の作動状態を最適化したパルス電界殺菌方法及びパルス電界殺菌装置を提案する。
【解決手段】被処理流体の流路と、この流路内で相互に対峙するように配置された電極対と、この電極対にパルス電流を出力するためのパルス電源とを有するパルス電界殺菌装置を用いて流体を殺菌する方法であって、ある基準値の導電率の流体を流路に満たしたときの電極対間の電気抵抗が、パルス電源の出力インピーダンスよりも大きくなるように電極対を設定する段階と、電極対を含む流路に上記基準値以上の導電率を有する被処理流体を流す段階と、電極対にパルス電圧を印加する段階とを含む。 (もっと読む)


【課題】汚染空気の洗浄能力を高めると共に洗浄水の汚染を防止する汚染空気洗浄装置及び方法を提供する。
【解決手段】本汚染空気洗浄装置1は、汚染空気2と洗浄水3とを接触させることにより上記汚染空気に含まれる汚染成分を上記洗浄水に除去させる空気洗浄部4と、上記空気洗浄部から排出された上記洗浄水を再び上記空気洗浄部に循環させる洗浄水循環部5と、を備える汚染空気洗浄装置において、上記洗浄水循環部は、上記洗浄水を流通して該洗浄水に電圧を印加する電解手段21と、電解後の洗浄水中に生じた沈降成分30aを回収する回収手段と、を備えている。 (もっと読む)


【課題】スケールの発生が抑制され、イオン除去能力の向上が図られたスパイラル型EDIを提供することを目的とする。
【解決手段】中心電極の周囲にアニオン交換膜22とカチオン交換膜20とを巻回し、アニオン交換膜22とカチオン交換膜20とで脱塩室および濃縮室が、外周電極34内に形成されたスパイラルエレメント10を有するスパイラル型電気式脱イオン水製造装置であって、前記脱塩室は、スパイラルエレメント10の軸方向に、多段に複数の小脱塩室に区画され、前記小脱塩室間を連通する配管14が設けられていることよりなる。 (もっと読む)


【課題】放電空間となるギャップの間隔調整が容易で放電空間の距離を高精度に設定できると共に水中放電長を長く取れ、均一な安定放電を得ることができ、連結が容易で大容量化を容易に図れるようにすること。
【解決手段】このオゾン発生装置は、円筒状をなす接地電極1と、接地電極1の内側に配置された高圧電極2と、接地電極1と高圧電極2との間に生成空間3となるギャップを形成するギャップ支持体4と、接地電極1及び高圧電極2の電極表面に形成された絶縁層5a,5bとを備える。生成区間3に酸素を含むガスを気泡分散した水を供給すると共に、接地電極1と高圧電極2との間に電圧を印加して生成空間3に存在する水中気泡内で放電させてオゾンガス及びオゾン水を生成する。 (もっと読む)


【課題】ナノバブル・マイクロバブル装置、電気分解や従来のパルスプラズマ処理装置では高濃度・難分解有機物・有害物質の浄化・滅菌がまだ不充分であり、本発明は、構造が簡単で安価でありながら流体の分解・分離処理に優れ、浄化、滅菌、殺菌効果に優れた流体処理装置の提供を目的とする。
【解決手段】陽極と陰極とを交互に複数組配置した流体処理室と、陽極と陰極との間にパルス電磁波を印加するためのパルス電磁波発生手段とを備え、陽極と陰極との間に水中プラズマを発生させることで流体の処理をすることを特徴とする。 (もっと読む)


41 - 60 / 115