説明

Fターム[4G042DB10]の内容

Fターム[4G042DB10]に分類される特許

61 - 80 / 92


【課題】ハニカムフィルタ等の各種基材に対して付着性が高く且つ優れた耐熱性を有しており、更に基材上に形成する被覆の薄膜化も可能な金属酸化物ナノ多孔体の製造方法を提供すること。
【解決手段】アルミナ、ジルコニア、チタニア、酸化鉄、希土類元素酸化物、アルカリ金属酸化物及びアルカリ土類金属酸化物からなる群から選択される前記金属酸化物のうちの少なくとも一種のコロイド粒子を含む、前記2種以上の金属酸化物の原料を含有する原料流体組成物を準備する工程と、前記原料流体組成物を、粒子径変化量(混合後のコロイド粒子の平均粒子径/混合前のコロイド粒子の平均粒子径)が1.3以上となるように混合した後、実質的に共沈させることなく熱処理して、直径が10nm以下のナノ細孔を有しており且つ前記ナノ細孔を構成する壁体において前記金属酸化物が均質に分散する工程と、を含むことを特徴とする金属酸化物ナノ多孔体の製造方法。 (もっと読む)


【課題】多孔性金属酸化物及びその製造方法を提供する。
【解決手段】配位高分子を熱処理する工程を含む多孔性金属酸化物の製造方法である。これにより、粒子形状の制御が容易でありつつも、気孔の形態及び分布が調節できる。 (もっと読む)


軸方向投入プラズマトーチを用いるマイクロパウダーおよびナノパウダーなどの粉体の製造用の方法およびシステム。液体前駆物質を霧化し、プラズマトーチの収束領域へ投入する。続いて、粒子の熱流のクエンチを行い、生成した粉体を収集する。
(もっと読む)


【課題】本発明は、ソフト溶液プロセスにより膜欠陥部の少ない金属酸化物膜を成膜できる金属酸化物膜の製造方法を提供することを主目的とするものである。
【解決手段】本発明は、スプレー装置により、金属源として金属塩または金属錯体が溶解した金属酸化物膜形成用溶液を液滴化した後、上記金属酸化物膜形成用溶液の液滴を金属酸化物膜形成温度以上に加熱した基材に接触させることにより、上記基材上に金属酸化物膜を形成する金属酸化物膜の製造方法であって、上記基材はアースされ、かつ、上記金属酸化物膜よりも導電性が高いものであり、さらに上記液滴を帯電させた状態で上記基材に接触させることを特徴とする金属酸化物膜の製造方法を提供することにより上記課題を解決するものである。 (もっと読む)


【課題】本発明は、基材の形態に関わらず、透明性、緻密性、密着性等に優れた金属酸化物膜を得ることができる金属酸化物膜の製造方法を提供することを主目的とするものである。
【解決手段】本発明は、スプレー装置により、金属源として金属塩または金属錯体が溶解した金属酸化物膜形成用溶液を霧化し、霧化された上記金属酸化物膜形成用溶液と金属酸化物膜形成温度以上の温度以上に加熱した基材とを接触させることにより、上記基材上に金属酸化物膜を形成する金属酸化物膜の製造方法であって、上記基材を上記金属酸化物膜が形成される成膜面側から加熱することを特徴とする、金属酸化物膜の製造方法を提供することにより上記課題を解決するものである。 (もっと読む)


【課題】本発明は、筒状基材の外周面に、厚みが均一で、透明性、緻密性、密着性等に優れた金属酸化物膜を得ることができる金属酸化物膜の製造方法を提供することを主目的とするものである。
【解決手段】本発明は、貫通孔を有する筒状の基材を用い、上記基材の外周面を金属酸化物膜形成温度以上に加熱し、さらに上記貫通孔を中心として上記基材を回転させた状態で、上記基材の外周面に金属酸化物膜形成用溶液をスプレー装置で噴霧することにより、上記基材の外周面に金属酸化物膜を形成することを特徴とする金属酸化物膜の製造方法を提供することにより上記課題を解決するものである。 (もっと読む)


【課題】粒子形状の均一な粉体を製造できる粉体製造装置および粉体製造方法を提供する。
【解決手段】ミスト発生手段6によって原料液のミストを生成し、ミストを気流によって搬送し、乾燥装置2によって気流を加熱することでミストを乾燥して原料粉体を生成し、プラズマ加熱装置3のプラズマ発生手段8が形成する超高温のプラズマ空間で原料粉体を熱分解して融合する。 (もっと読む)


【課題】粒子径が十分に小さい金属酸化物微粒子が均一かつ安定的に分散された金属酸化物微粒子分散液およびその製造方法を提供することにある。
【解決手段】平均一次粒径が1〜200nmの範囲にある、マグネシウム、アルミニウム、ケイ素、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ストロンチウム、イットリウム、等から選ばれる少なくとも一種の元素の酸化物あるいは複合酸化物微粒子を有機分散媒中に分散させて得られ、その分散液の金属酸化物微粒子のメジアン粒径(体積基準)が1〜100nm、最大粒径が10〜1000nmの範囲にある金属酸化物微粒子分散液。 (もっと読む)


【課題】真空紫外光を利用して、より低い温度で結晶性の金属酸化物膜を形成可能な製造方法を提供すること。
【解決手段】本発明の金属酸化物膜製造方法は、熱分解により金属酸化物を形成可能な金属酸化物前駆体を含む前駆体皮膜を用意することを含む。また、O2濃度7モル/m3以上の雰囲気中で前記皮膜に向けて主波長130〜180nmの真空紫外光を照射して該皮膜から結晶性の金属酸化物膜を形成させることを含む。かかる製造方法によると、例えば、80℃以下の温度で前記真空紫外光の照射を行うことによって、結晶性の金属酸化物膜を形成することができる。 (もっと読む)


【課題】 火炎式噴霧熱分解法によって原料成分の多くを微細な粉体にすることができる粉体製造装置および粉体製造方法を提供する。
【解決手段】 粉体製造装置1は、筒状の粉体生成塔2と、粉体生成塔2の内部に頂部から粉体原料の水溶液を下向きに噴霧する噴霧装置6と、粉体生成塔2の内部に火炎を噴射する火炎噴射装置7と、粉体生成塔2の底部から粉体を含む気体を引き抜く排気路9と、排気路9が下端に接続され、内部を前記粉体生成塔2から引き抜いた粉体を含む気体が垂直上方に流れるように直立して設けられた精製管3とを有する。 (もっと読む)


【課題】 火炎式噴霧熱分解法によって粉体を生成する際に、反応温度を適正に保ち、不純物を生じさせない粉体製造装置を提供する。
【解決手段】 内部に原料水溶液を噴霧する噴霧手段7と、内部に向かって火炎を噴射する複数の火炎噴射ノズル8とを備える直立筒状の粉体生成塔5を有する粉体製造装置1において、複数の火炎噴射ノズル8は、粉体生成塔5の径方向に対して水平に一定の角度を有し、高さをずらして、螺旋状に配置する。 (もっと読む)


本発明は向上したフレーム溶射熱分解(FSP)プロセスを用いた金属粉末、非酸化物性セラミック粉末及び還元された金属酸化物粉末の製造に関する。本発明は更に、該プロセスに特に適合される装置、該プロセスにより得られる粉末/ナノコンポジット及び該粉末/ナノコンポジットの使用に関する。 (もっと読む)


【課題】単一金属酸化物および複合金属酸化物のナノ粒子を高価な設備を要せずに製造することを可能とし、かつ、大量生産に適した製造方法を提供する。
【解決手段】溶融硝酸アンモニウム中に1種以上の金属化合物を溶解して融体を得る。得られた融体を硝酸アンモニウムの分解温度以上に保持して硝酸アンモニウムを熱分解し、揮発させて除去し、金属酸化物を得る。
得られた金属酸化物を300〜1200℃の温度範囲で5〜12時間加熱すると結晶化することができ、また、得られた金属酸化物を500〜1100℃の温度範囲で5〜12時間加熱すると、結晶化に必要な時間を短縮できるとともに、粒子径をある程度以下に抑えることができる。 (もっと読む)


【課題】金属酸化物中に微量成分を均質に分散させた複合微粒子の製造方法を提供する。
【解決手段】1種類以上の無機金属化合物を含む液体またはスラリーに、微量成分の溶液を添加する工程、得られた混合液体または混合スラリーに、パルス燃焼ガスを接触させて乾燥させる工程からなる微量成分が均一に分散した複合微粒子の製造方法である。 (もっと読む)


【課題】
酸素供給源および発熱源との混合時において発火・爆発などの危険性がない安全な燃焼合成方法およびこの方法で製造された誘電体セラミックスを提供する。
【解決手段】
酸素供給源である過酸化物粉末と、発熱源である金属粉末とを少なくとも含む反応原料を用いた燃焼合成方法であって、該燃焼合成方法は、予め上記過酸化物粉末および金属粉末のいずれか一方と、安定な原料粉末とを混合して中間原料粉末を得る予備混合工程と、該予備混合工程で得られた中間原料粉末に、上記過酸化物粉末および金属粉末のうち、上記予備混合工程に使用しなかった粉末を混合して原料粉末を得る混合工程と、該混合工程で得られた原料粉末を燃焼合成して焼結体とする燃焼合成工程とを備えてなる。 (もっと読む)


【課題】金属化合物の無機多孔質構造を有し、粒子状生体材料の外殻形状を保持している多孔質中空粒子、その製造方法及び機能性部材を提供する。
【解決手段】粒子状生体材料の表面に金属化合物を析出又は被覆して形成した中空粒子であって、該金属化合物の多孔質膜構造を有し、該生体材料の外殻形状を保持している多孔質中空粒子、その製造方法、及び機能性部材。
【効果】粒子形状及び粒子径が比較的均一に揃ったミクロンサイズの多孔質中空粒子を、簡便に、環境に優しい手法で作製し、提供することができる。この多孔質中空粒子は、その高吸着性能、高光反射性能、高摩擦機能等の特性を利用して、例えば、吸着剤、分離材、顔料、化粧料、触媒、塗料等の微粒子材料として好適に利用することができる。

(もっと読む)


純粋または混合金属酸化物を製造する方法を記述し、本方法では、カルボキシレート基1個当たりの平均炭素価が少なくとも3の金属カルボン酸塩、例えば2−エチルヘキサン酸塩などである少なくとも1種の金属前駆体を液滴にしそしてそれに例えば炎による酸化を受けさせる。液滴を生じさせる前の粘度が通常は40mPa s未満の状態で本方法を実施するが、そのような粘度は、加熱を行ないそして/または充分に高いエンタルピーを有する1種以上の低粘度溶媒を添加することで得ることができる。 (もっと読む)


【課題】既存のGa系固体電解質材料の製造方法に比して簡易な(エネルギー消費の少ない)製造方法、並びに、従来品よりも易焼結性であるGa系固体電解質材料の製造方法を提供する。
【解決手段】下記1)〜4)に示す原料:
1)La、Ce、Pr、Nd及びSmの少なくとも1種を含む原料、
2)Sr、Ca及びBaの少なくとも1種を含む原料、
3)Gaを含む原料、並びに、
4)Mg及びAlの少なくとも1種を含む原料、を含有する混合溶液に超音波を照射することにより、混合溶液のエアロゾルを発生させ、該エアロゾルをキャリアガスとともに、加熱された中空管内を通過させることにより熱分解することを特徴とする、Ga系固体電解質材料の製造方法。 (もっと読む)


【課題】 結晶性が高く、純度も高く、単分散性に優れたナノ粒子を大量にかつ安価に製造することができるナノ粒子の製造方法を提供する。
【解決手段】 本発明のナノ粒子の製造方法は、粒子源Aを含有するポリマー粒子Bを熱処理もしくは化学反応、または、熱処理および化学反応することより、粒子源Aに起因するナノ粒子の核を生成し、次いで、ポリマー粒子Bに囲まれた領域にて前記核を熱処理するか、あるいは、粒子源Aを含有するポリマー粒子Bと、これらのポリマー粒子Bが互いに接触することを阻害する物質Cとを混合し、これらの混合物を熱処理もしくは化学反応、または、熱処理および化学反応することより、粒子源Aに起因するナノ粒子の核を生成し、次いで、ポリマー粒子Bに囲まれた領域にて前記核を熱処理することを特徴とする。 (もっと読む)


【課題】球形度と比表面積の大きな無機質酸化物粉末を容易に製造する。
【解決手段】有機金属化合物と、この有機金属化合物に含まれる金属と同種類の金属粉末を、別々に又は同時に炉内に供給し、熱処理することを特徴とする球状無機質酸化物粉末の製造方法である。本発明においては、金属粉末を水及び/又はアルコール媒体によるスラリーとして供給することが好ましい。また、有機金属化合物が、有機ケイ素化合物及び/又は有機アルミニウム化合物であり、金属粉末が、シリコン粉末及び/又はアルミニウム粉末であることが好ましい。 (もっと読む)


61 - 80 / 92