説明

Fターム[4G062FB05]の内容

ガラス組成物 (224,797) | Ti (5,144) | 30−50 (109)

Fターム[4G062FB05]に分類される特許

61 - 80 / 109


【課題】耐久性に優れ且つ酸化チタンの結晶を高確率に有する複合体の製造方法、及びこの製造方法で製造される複合体を含む光触媒機能性部材及び親水性部材を提供すること。
【解決手段】複合体の製造方法は、得られるガラス体が酸化物基準のモル%で、TiO成分を15.0〜90.0%、P成分を10.0〜85.0%含有するように調製された原料組成物を溶融しガラス化することで、ガラス体を作製するガラス化工程と、ガラス体を粉砕して粉砕ガラスを作製する粉砕工程と、粉砕ガラスを基材上に配置した後に加熱し焼成を行う焼成工程と、を有する。 (もっと読む)


【課題】レーザ照射により発生する組成分布が光学特性の変化を発生させうる、特定の成分を含有するガラス部材を提供する。
【解決手段】ガラス部材は、元素分布を有しない均一ガラス材料にパルスレーザを集光照射することにより、ガラス内部のレーザ照射領域及びその周辺領域に、他の領域とは異なる、ガラス組成の空間的な分布が存在する異質領域を有する。異質領域は、前記ガラス組成の空間的な分布により、他の領域とは異なる屈折率分布を有することが好ましい。 (もっと読む)


【課題】 光触媒作用を効率良く発揮させることができる光触媒体及びこれの製造方法、並びにこのような光触媒体を用いた浄化装置を提供する。
【解決手段】 光触媒作用を有する繊維状の光触媒体であって、少なくとも、シリカを主成分とし、酸化チタン(TiO)の含有量が1〜50wt.%であるシリカチタニア系ガラス繊維からなることを特徴とする繊維状光触媒体、及びこのような繊維状光触媒体の製造方法、並びにこのような繊維状光触媒体を具備する浄化装置。 (もっと読む)


【課題】プレス成形を行った後において、ガラス成形体の表面の凹凸や曇りを低減することのできるガラス成形体の製造方法、及びガラス成形体の曇り低減方法を提供する。
【解決手段】ガラス成形体の製造方法は、軟化したガラスに対して金型内でプレス成形を行うガラス成形体の製造方法において、Sb成分を実質的に含有しないガラスを用いるものである。また、ガラス成形体の曇り低減方法は、軟化したガラスに対する金型内でのプレス成形によって作製されるガラス成形体の曇り低減方法であって、プレス成形前のガラスに含まれるSb成分を低減するものである。 (もっと読む)


【課題】アッベ数(ν)が所望の範囲内にありながら、レンズの色収差をより高精度に補正することのできる光学ガラス、これを用いたプリフォーム及び光学素子を得る。
【解決手段】光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でTiO成分を5.0〜55.0%含有し、0.60以上0.68以下の部分分散比[θg,F]を有し、13以上27以下のアッベ数(ν)を有する。プリフォーム及び光学素子は、この光学ガラスからなるものである。 (もっと読む)


【課題】リン酸系ガラス粉末が均一に分散したリチウムイオン伝導性固体電解質グリーンシートが容易に得られる製造方法、および低コストで製造でき、緻密で高いイオン伝導度を有するリチウムイオン伝導性固体電解質の製造方法を提供することである。
【解決手段】第一のリン酸系ガラス粉末と溶剤を混合し第一スラリーを作製する工程と、
第一スラリー中のリン酸系ガラス粉末を粉砕して第二スラリーを作製する工程と、
第二スラリーを乾燥させて第二のリン酸系ガラス粉末を作製する工程と、
前記第二のリン酸系ガラス粉末と、ガラス転移温度が−25〜25℃の有機バインダと、分散剤とを水を含む液体を溶媒として混合して第三スラリーを作製する工程と、
を含むリチウムイオン伝導性固体電解質グリーンシートの製造方法。 (もっと読む)


【課題】アッベ数(ν)が所望の範囲内にありながら、レンズの色収差をより高精度に補正することのできる光学ガラス、これを用いたプリフォーム及び光学素子を得る。
【解決手段】光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でNb成分を1.0〜75.0%、及びTiO成分を40.0%以下含有し、0.63以上0.69以下の部分分散比[θg,F]を有し、15以上27以下のアッベ数(ν)を有する。プリフォーム及び光学素子は、この光学ガラスからなるものである。 (もっと読む)


【課題】チウムイオン伝導性粉末を含む成形体を焼成して固体電解質を得る方法において、成形体の焼成時に表面近傍と内部で結晶成長をほぼ均一にし、高いリチウムイオン伝導度を有する固体電解質の製造方法を提供すること。
【解決手段】 熱処理後にリチウムイオン伝導性を呈するガラス粉末、リチウムイオン伝導性を有する無機粉末、又はその両方(以下、これらを「リチウムイオン伝導性粉末」という)を含む成形体を、前記成形体を20℃、1×10Paにおける熱伝導率が50W・m−1・K−1以下のセッターで挟み、焼成する工程を含む固体電解質の製造方法。 (もっと読む)


本発明は、結晶相を含むガラス組成物、及びそれから製造されるガラスフレークに関する。これらのガラスフレークは、効果顔料におけるベースとなる基材として使用できる。ガラスフレークはさらに、塗料、コーティング、印刷用インク、プラスチック及び化粧品配合物において使用できる。ガラスフレークはガラス−セラミックに転換され、質量%による以下の組成範囲I又はIIのうちの1つで存在する:I:40〜50 SiO2、10〜20 B23、10〜20 Na2O、15〜30 TiO2;II:10〜60 SiO2、5〜30 B23、5〜40 TiO2、2〜20 Nb25、2〜20 Fe23、5〜40 Na2O+K2O+CaO+SrO+BaO。 (もっと読む)


【課題】屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、低い温度で軟化し易く、プレス成形を行い易い光学ガラスと、これを用いた光学素子及び精密プレス成形用プリフォームを提供する。
【解決手段】この光学ガラスは、酸化物換算組成のガラス全物質量に対して、モル%でB成分を5.0〜50.0%、TiO成分を5.0〜40.0%、ZnO成分を1.0〜40.0%、及びLa成分を5.0〜20.0%含有する。精密プレス成形用プリフォーム及び光学素子は、この光学ガラスを母材とする。 (もっと読む)


【課題】従来のチタン酸バリウムは、原料粉末を焼結法によって作製しているため、1000度以上の高温を必要として、割れ等の原因により大きな緻密体や精密な形状の作製が困難であった。また、焼結に必要とする分散材などの影響も大きく、性能が分散材に依存するといえる。
【解決手段】ホウ酸(15−40mol%)、酸化チタン(25−40mol%)、酸化バリウム(25−40mol%)、酸化カリウム(0−20mol%)の組成のガラスを作製し、結晶化温度で熱処理することにより、チタン酸バリウムを析出させることができる。酸化チタンと酸化バリウムが等しいモル数のところに、酸化カリウムを酸化チタンと置換することで様々な特性を有するチタン酸バリウムを作製できる。また、ガラス中に様々な化合物を導入することができ、光学を含む幅広い工学分野へのデバイスとして利用できる。 (もっと読む)


【課題】製造工程での取扱いが容易であって、表面の剥離や経時劣化も少なく、高い光触媒特性を有するガラスセラミックス、及びその製造方法を提供する。特に、比較的容易な方法で所望の形状に成形できる光触媒活性が高いガラスセラミックスを提供する。
【解決手段】TiO、又はこの固溶体、から選ばれる少なくとも1種を含む結晶性組成物と、SiO成分、B成分、又はP成分から選ばれる少なくとも1種以上を含むガラス性組成物とからなるガラスセラミックスであって、該ガラス性組成物をマトリックス成分とする。結晶性組成物は、光触媒性が高い結晶型を有することができる。 (もっと読む)


【課題】耐久性の問題がなく、比較的容易な方法で所望の形状に成形でき、更に光触媒活性が高いガラスセラミックスを提供する。
【解決手段】光触媒としての活性を持ちえる結晶相として、TiO、CaTi12、CaTi、CaTiSiO又は、これらの固溶体、から選ばれる少なくとも1種を含み、SiO2成分を含むガラス相を有し、酸化物基準のモル%で、TiO2成分を5〜60%、SiO2成分を15〜80%含有するガラスセラミックスである。 (もっと読む)


【課題】結晶の大きさおよび結晶相の比率と相組成が予め決定可能及び調整可能なコンデンサ又は高周波フィルタにおける使用に適したガラス・セラミックの製造方法を提供する。
【解決手段】最大直径20〜100nmの強誘電性微結晶が得られガラス・セラミック中の強誘電性微結晶の比率が少なくとも50容積%、ガラス・セラミック中の非強誘電性微結晶の比率が10容積%未満、ガラス・セラミック内に有るポアが0.01容積%未満であり、且つe’・Vmaxの値が少なくとも20(MV/cm)であるガラス・セラミック(ここで、e’は1kHzにおけるガラス・セラミックの比誘電率、Vmaxは絶縁破壊電圧/ガラス・セラミック厚さである)であり、出発ガラスを生成する工程と、該出発ガラスをセラミック化中少なくとも10K/minの加熱又は冷却速度でセラミック化してガラス・セラミックを生ずる工程を含んで成る方法。 (もっと読む)


【課題】母材ガラスと異質相領域との可視光における屈折率差Δnの絶対値|Δn|が高い光学部品用ガラス部材を提供する。
【解決手段】この光学部品用ガラス部材は、パルスレーザーを集光照射して、ガラス内部の所望の位置に屈折率差が異なることにより区分される異質相領域が形成される。このとき、SiO、RnO+RO、TiOの多成分系ガラスを用いることにより、低照射強度で|Δn|0.005以上が得られる。光学的ローパスフィルタ、回折光学部品、光拡散部品、光フィルタ、レンズ、マイクロレンズアレイ等の光学部品に好適である。 (もっと読む)


【課題】固体電解質層と電極層(例えば、正極層)を焼成し相互に結合させる際に、層間の強い結合を維持しつつ、境界層における高いイオン伝導性を備えることができるリチウムイオン二次電池の製造方法を提供する。
【解決手段】電解質グリーンシート及び正極グリーンシートを重ねて積層体を作製する工程と、前記積層体を焼成する工程と、を含むリチウムイオン二次電池の製造方法において、前記電解質グリーンシート及び前記正極グリーンシートの少なくとも一方は、前記焼成工程においてリチウムイオン伝導性の結晶が析出する非晶質の酸化物ガラス粉末を含む。 (もっと読む)


【課題】固体電解質層、正極層、及び負極層を焼成し相互に結合させる際に、層間の強い結合と層内の焼結による高いイオン伝導性を備えることができるリチウムイオン二次電池の製造方法を提供する。
【解決手段】電解質グリーンシートを挟んで、正極グリーンシート及び負極グリーンシートを積層して積層体を作製する工程と、前記積層体を焼成する工程と、を含むリチウムイオン二次電池の製造方法において、前記正極グリーンシート又は前記負極グリーンシートの少なくとも一方は、リチウムイオン伝導性の酸化物結晶を含む。 (もっと読む)


【課題】屈折率及びアッベ数が所望の範囲内にありながら、高い化学的耐久性を有する、光学ガラス及び光学素子を提供する。
【解決手段】この光学ガラス及び光学素子は、酸化物換算組成のガラス全質量に対して、質量%でSiO成分を27.0〜46.0%、TiO成分を20.0〜35.0%、Nb成分を1.0〜15.0%、RO成分を2.0〜25.0%(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)、及びRnO成分を3.0〜30.0%(式中、RnはLi、Na、K、Csからなる群より選択される1種以上)含有する。 (もっと読む)


【課題】より出力が大きく安全性の高いリチウム固体電池を作製できる、固体電解質の製造方法及びリチウム電池の製造方法を提供する。
【解決手段】この固体電解質の製造方法は、リチウムイオン伝導性の結晶を有する固体電解質の製造方法であって、熱処理後にリチウムイオン伝導性を呈する酸化物ガラス粉末、熱処理後にリチウムイオン伝導性を有する無機粉末、又はその両方(以下、これらを「リチウムイオン伝導性粉末」という)を含む固体電解質グリーンシートを作製するグリーンシート作製工程と、前記固体電解質グリーンシートを焼成する焼成工程を有し、前記焼成工程は昇温工程を含み、前記昇温工程は0.05℃/sec以上の勾配で1min以上昇温する急昇温工程を有する。 (もっと読む)


【課題】大きくて、複雑な形状の物品が成形可能であるガラス物品の製造方法およびその方法により得られた物品の提供。
【解決手段】粒子、ビーズ、ミクロスフェアまたは繊維の形態のガラスを準備する工程であって、そのガラスが少なくとも2種類の金属酸化物と、ガラスの重量に基づいてSiO2を0〜20重量%未満、B23を0〜20重量%未満およびP25を0〜40重量%未満とを含み、前記ガラスは、ガラス転移温度Tgと結晶化開始温度Txとを有しており、そのガラス転移温度Tgと結晶化開始温度Txとの差が少なくとも25Kである工程、Tg以上の温度で、前記粒子、ビーズ、ミクロスフェアまたは繊維が融合して、融合した形成体を成形するように前記ガラスを加熱する工程、および前記融合した形成体を加熱して、平均サイズが1マイクロメートル未満の晶子を少なくとも1容量%含むガラス−セラミックを形成する工程を含む、ガラス−セラミックの製造方法。 (もっと読む)


61 - 80 / 109