説明

Fターム[4G077BC53]の内容

結晶、結晶のための後処理 (61,211) | 材料−複合酸化物 (686) | 超電導酸化物 (45) | Cuを含む (34) | RE−(Ca、Sr、Ba)−Cu−O (30)

Fターム[4G077BC53]の下位に属するFターム

Fターム[4G077BC53]に分類される特許

1 - 20 / 28


【課題】単層でも臨界電流特性を良好にする。
【解決手段】基材上に形成され、RE系超電導体20を主成分として含有する酸化物超電導薄膜であって、RE系超電導体20は、CuO面22と、CuO単鎖24と、CuO重鎖26とを有し、さらに、CuO単鎖24とCuO重鎖26が隣り合う異種鎖部と、CuO単鎖24同士又はCuO重鎖26同士が隣り合う同種鎖部と、を有する。 (もっと読む)


【課題】
マイクロクラックの発生を抑制して300nm以上の膜厚を持つサファイア基板上に超電導材料の成膜を可能にする及びその製造方法を提供する。
【解決手段】
酸化物が超電導物質を形成する金属の有機化合物溶液を基板上に塗布し乾燥させる工程(1)、紫外光であるエキシマレーザによって金属の有機化合物の有機成分を光分解するレーザ照射工程(2)、金属の有機化合物中の有機成分を熱分解させる仮焼成工程(3)、超電導物質への変換を行う本焼成工程(4)を経て基板上にエピタキシャル成長させた超電導薄膜材料を製造するに際し、本焼成工程を行う前に所定の箇所のみにレーザ照射を行うことにより、超電導物質内にa軸成長する前駆体箇所とc軸成長する前駆体箇所を混在させたのちに本焼成工程を行い、所定の箇所のみc軸成長させることを特徴とする超電導材料の内部応力を緩和することを特徴とする酸化物超電導材料の製造方法。 (もっと読む)


【課題】本発明は、結晶配向性に優れたペロブスカイト構造の中間薄膜を備えた酸化物超電導導体の提供を目的とする。
【解決手段】本発明は、基材と、該基材上に直接あるいは下地層を介し積層された中間薄膜と酸化物超電導層とを具備する酸化物超電導導体であって、前記中間薄膜が、粒子堆積により基材上にあるいは基材上に下地層を介し中間薄膜を形成する際、基材上方の成膜面に対し斜め方向からアシストイオンビームを照射しつつ成膜するイオンビームアシスト成膜法により形成されたペロブスカイト型酸化物の中間薄膜であって、該中間薄膜を構成する複数の結晶の結晶軸のうち2軸が配向され、これら結晶の配向度を示す正極点図において4回対称性を示す中間薄膜であることを特徴とする。 (もっと読む)


【課題】均一な超電導体を製造する超電導体製造用種結晶および種結晶を用いた超電導体の製造方法を提供することにある。
【解決手段】RE1Ba2Cu3y系超電導体の製造に用いる種結晶(10)であって、MgOの結晶体(11)と、このMgOの結晶体(11)上に形成したRE2Ba2Cu3y系超電導体の薄膜(12)を有し、RE1は、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Y、Ho、Er、Tm、Yb、Luからなる群から選ばれた少なくとも1以上の元素をさし、RE2は、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Y、Ho、Er、Tm、Yb、Luのうち前記RE1として選ばれた元素と比較して超電導体の融点温度について同じ又はより高い元素の群から選ばれた少なくとも1以上の元素をさす。 (もっと読む)


【課題】本発明は、酸素富化過程を含む酸化物超電導バルク材料の製造方法において、十分に高い超電導特性を得ることのできる酸化物超電導バルク材料の製造方法を提供する。
【解決手段】単結晶状のRE1+xBa2-xCu3y(REはY又は希土類元素から選ばれる1種又は2種以上の元素、−0.1≦x≦0.1、6.8≦y≦7.2)中にRE2BaCuO5が微細分散した酸化物超電導バルク材料の製造方法であって、溶融状態から徐冷中に結晶成長させた酸化物超電導バルク材料の酸素量を酸素富化過程において富化する前に、1000K以上、1250K以下の温度で前記結晶成長させた酸化物超電導バルク材料を熱処理する酸素富化前熱処理過程を有することを特徴とする酸化物超電導バルク材料の製造方法である。 (もっと読む)


【課題】金属有機化合物の熱分解による超電導膜の熱処理形成において、低コストで大きい膜厚と配向性を得るための製造方法を提供する。
【解決手段】0.6〜数μm程度の膜厚の超電導膜材料の製造において、塗布熱分解法における仮焼成工程の前に、KrCl紫外エキシマランプ光を15mW/cm以上の照度で照射することにより、仮焼成工程で得られる仮焼成膜の元素分布の均一性が著しく向上し、その後の本焼成工程を経て、大きい膜厚と配向性をもつ超電導膜が製造できる。 (もっと読む)


【課題】本発明は、レーザー蒸着する場合のターゲットの無駄を少なくして成膜コストの低減を図るとともに、成膜領域の熱分布を均等にして安定した膜質の薄膜を成膜することができるレーザー蒸着装置の提供を目的とする。
【解決手段】本発明は、レーザー光をターゲットの表面に照射し、該ターゲットから叩き出され若しくは蒸発した蒸着粒子をヒーターボックス内において巻回部材に支持された長尺基材表面に堆積させるレーザー蒸着装置であって、巻回部材間に複数列に分けて支持される長尺基材の幅方向の設置範囲に対応する幅のターゲットが設置され、該ターゲットの裏面側に該ターゲットよりも幅広のバッキングプレートが設置され、該ターゲットの幅方向両側に耐熱金属製のダミープレートが設置され、ダミープレートのバッキングプレート側に酸化物膜が形成されてなることを特徴とする。 (もっと読む)


配向金属基板の機能化表面上にエピタキシャル金属酸化物からなるバッファ膜を堆積する方法であって、前記方法は次の各ステップを含む、(1)A2−x2+xタイプの酸化物からなるプリカーサ膜が堆積され、ここでAは、価数3の金属又はこれらの金属のうちの複数の金属混合物を表しており、Bは、価数4の金属を表しており、xは−0.1と+0.1の間の数値であり、前記酸化物は、前記金属A及びBからなるカルボン酸塩溶液から得られ、(2)前記酸化プリカーサ膜は乾燥に晒され、(3)前記酸化プリカーサ膜を熱分解すると共に前記酸化物を形成するために、熱処理が実行され、前記熱処理の少なくとも一部は、還元ガス流の下で実行される。
(もっと読む)


配向金属基板の曲面状の表面に、少なくとも一つの金属よりなる酸化物膜を堆積する方法であって、次の各ステップを含んでおり、(1)少なくとも一つの金属酸化物よりなるプリカーサ膜は、上記金属からなる少なくとも一つの上記プリカーサの有機溶液を用いて堆積され、上記溶液は、好ましくは、当該方法の温度で測定され、1mPa・s〜20mPa・sの間の値、さらに好ましくは2mPa・s〜10mPa・sの間の値の粘度を有しており、(2)上記酸化物プリカーサ膜は、好ましくは80℃〜100℃との間の値の温度にて、乾燥に晒され、(3)上記酸化物プリカーサ膜を熱分解すると共に上記金属酸化物を形成するために、熱処理が実行され、上記熱処理の少なくとも一部は、還元ガス流の下で実行され、上記還元ガスは、好ましく0.005cm/sよりも大きい流量を好ましくは有し、好ましく0.012cm/sと0.1cm/sとの間、より好ましくは0.04cm/sと0.08cm/sとの間の値の流量を有する。
(もっと読む)


【課題】REBaOとBa−Cu−O系混合原料との固液反応を用いることにより、RE123系酸化物超電導体を形成する方法は、低温で保持部材が金属シースの単芯線材または多芯線材を形成する方法であったが、臨界電流Icおよび臨界電流密度Jcの値が低く、しかもそれらの再現性に乏しいという課題があった。
【解決手段】少なくともREBaOとBa−Cu−O系原料とを含む混合原料を保持部材の内部に保持した状態で、混合原料を加熱することにより、REを含む複合相前駆体を形成する工程と、複合相前駆体を形成する工程を行なった後に保持部材の内部に保持された複合相前駆体を加圧することにより、複合相前駆体を緻密化する工程と、緻密化された複合相前駆体に、酸素を含む雰囲気中で熱処理を行なう工程とを備える、RE123系酸化物超電導体の製造方法を用いる。 (もっと読む)


【課題】本発明は、強度の向上と、熱はけ性の良好な酸化物超電導バルク体の提供を目的とする。
【解決手段】本発明は、REBaCu7−X(REはYを含む希土類元素(La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの1種または2種以上を示す。)なる組成の酸化物超電導バルク体を製造するに際し、酸化物超電導バルク体を構成する元素の原料粉末を加圧成形して圧密する際、原料混合粉末中に溶融凝固法に伴う加熱温度において溶融しない貴金属の補強体を挿入して圧密し、目的の形状の前駆体を得た後、この前駆体に対し、溶融凝固法を適用して結晶成長させることを特徴とする。 (もっと読む)


【課題】超伝導体層を鋳型緩衝層に直接蒸着させることができる、簡略化された層構造を有する被覆導体の提供。
【解決手段】二軸配向組織化基板と、一般式RE2-x2+x7(ここで、Reは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Y、Tm、Yb及びLuから選択される少なくとも1種の金属であり、Bは、Zr及びHfから選択される少なくとも1種の金属であり、−0.4≦x≦+0.7である。)を有する材料から構成される鋳型緩衝層と、該鋳型緩衝層上に直接被覆され、ハイブリッド液相エピタキシーにより得られる超伝導体層とを備える被覆導体を提供する。 (もっと読む)


【課題】固体基板上のCVDリアクタとそのウェハ上にエピタキシャル層を蒸着させる装置のリアクタ・サイクルの低減と、構成部品の低コストおよび長寿命と、高精度の温度制御とを提供する。
【解決手段】リアクタ内にウェハ・キャリヤ110を装着し、装着位置と蒸着位置Dの間を移動する。蒸着位置では、ウェハ・キャリヤは、中間サセプタを必要とせずに、回転式スピンドル120の上端に取り外し可能に取り付けられる。リアクタは、単一ウェハまたは同時に複数のウェハを処理できる。1つの変形形態では、スピントルを通るウェハ支持アセンブリの熱放散の低減と、そのための新規の加熱機構。 (もっと読む)


【課題】高臨界電流密度であり、かつ、クラックの生じない高温超電導酸化物(RE)Ba2Cu3O7 (RE = Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb)(以下 (RE)BCO 薄膜と略称)の薄膜及びその作製方法を提供する。
【解決手段】
バッファ層を有するサファイア単結晶基板のバッファ層上に、1%以上の空孔を導入した高温超電導酸化物 (RE)BCO 薄膜を、間に (RE)BCO 薄膜とは異なるRE’を選んだ (RE’)Ba2Cu3O7の中間層薄膜を介して設けた多層構造の(RE)BCO 薄膜及びその製造方法。 (もっと読む)


【課題】金属有機化合物の熱分解および超電導物質の熱処理形成を行うに際して、効率よく、性能が改善された大面積の超電導材料の製造方法を提供する。
【解決手段】
酸化物が超電導物質を形成する金属の有機化合物溶液を支持体上に塗布し、乾燥させる工程(1)、金属の有機化合物中の有機成分を熱分解させる仮焼成工程(2)、超電導物質への変換を行う本焼成工程(3)を経てエピタキシャル成長させた超電導コーティング材料を製造するに際し、工程(1)と工程(2)の間でレーザ光をさせて照射する際に、超電導物質を形成する金属の有機化合物溶液を塗布した面の反対側の面からレーザ光を照射することを特徴とする超電導材料の製造方法。 (もっと読む)


【課題】大量生産に適したネオジムガレート単結晶上に望ましい配向を有する希土類123型超電導膜の製造方法を提供する。
【解決手段】ネオジムガレート単結晶上に、セリウムの有機化合物を有機溶媒あるいは水に溶解した溶液を塗布し、加熱処理することで配向した酸化セリウム(セリア)膜を作製し、その上に希土類元素、バリウム及び銅を含有する金属有機化合物を有機溶媒に溶解させた溶液を塗布し、加熱処理することを特徴とするc軸配向性をもつ希土類123型超電導体多層膜の製造方法。
(もっと読む)


【課題】大量生産に適したイットリウムアルミネート単結晶上に望ましい配向を有する希土類123型超電導膜の製造方法を提供する。
【解決手段】イットリウムアルミネート単結晶上に、セリウムの有機化合物を有機溶媒あるいは水に溶解した溶液を塗布し、加熱処理することで配向した酸化セリウム(セリア)膜を作製し、その上に希土類元素、バリウム及び銅を含有する金属有機化合物を有機溶媒に溶解させた溶液を塗布し、加熱処理することを特徴とするc軸配向性をもつ希土類123型超電導体多層膜の製造方法。
(もっと読む)


【課題】超伝導薄膜の製造方法のひとつである塗布熱分解法において、結晶化の工程である本焼成に長時間を要するという問題を解決する。
【解決手段】塗布熱分解法において、基材1の上層に超伝導体の構成元素を含む塗布膜3を設ける。さらに塗布膜3表面側に表面側シード材層4を設け、仮焼成、本焼成を行う。本焼成時には、基材1側で表面に向けて結晶化が行われるとともに、前記表面側シード材層4からも基材側に向けて結晶化が行われる。この結果、両方向からの結晶化がなされることで結晶化に必要な時間が短縮される。また、基材1と塗布膜3との間にはバッファ層2を設けるのが望ましい。バッファ層2は、基材1と塗布膜3との化学反応を阻止するとともに、結晶化のシードとして機能する。 (もっと読む)


【課題】臨界電流値を向上することのできる超電導薄膜材料の製造方法、超電導機器、および超電導薄膜材料を提供する。
【解決手段】超電導薄膜材料の製造方法は、気相法により超電導層3を形成する気相工程と、超電導層3に接するように、液相法により超電導層4を形成する液相工程とを備えている。超電導層3と金属基板1との間に中間層2を形成する工程がさらに備えられていることが好ましい。金属基板1は金属よりなっており、かつ中間層2は岩石型、ペロブスカイト型、またはパイロクロア型のいずれかの結晶構造を有する酸化物よりなっており、かつ超電導層3および超電導層4はいずれもRE123系の組成を有していることが好ましい。 (もっと読む)


【課題】 電解研磨または化学研磨によって金属基材の表面粗さを改善し、優れた超電導特性を有する酸化物超電導導体の提供。
【解決手段】 Moを含まないNi−Cr合金からなり、その表面が電解研磨または化学研磨された金属基材上にイオンビームアシスト法によって多結晶中間薄膜が設けられ、該多結晶中間薄膜上に酸化物超電導体薄膜が設けられてなることを特徴とする酸化物超電導導体。 (もっと読む)


1 - 20 / 28