説明

Fターム[4G077EA02]の内容

Fターム[4G077EA02]に分類される特許

161 - 180 / 559


【課題】 大口径の窒化物単結晶基板を得ることができる窒化物単結晶体の製造方法を提供する。
【解決手段】 気相成長法によって種基板5にバルク状の窒化物単結晶体7を作製する窒化物単結晶体の製造方法であって、種基板5を加熱する工程と、種基板5を回転させながら、種基板5に対して平行または傾斜する方向Aから原料ガスを種基板5に供給し、前記種基板となす角度が前記方向Aと異なる方向Bから原料ガスと同一の原料ガスを種基板5に供給する工程と、を具備する。 (もっと読む)


【課題】支持基板の上に結晶性及び平坦性が高い窒素とガリウムを含む半導体層を有する半導体ウェハを提供する。
【解決手段】支持基板1と、上面2bが少なくとも単結晶となっているIII族窒化物系半導体の第1の窒化物系半導体層2と、第1の窒化物系半導体層2の上面2bに設けられ、窒素とガリウムを含む第2の窒化物系半導体層3とを備える。 (もっと読む)


【課題】育成されるサファイア単結晶内部に気泡が含まれ難いサファイア単結晶育成装置を提供すること。
【解決手段】サファイア原料が充填される坩堝1と、坩堝の外周面を加熱する円筒状本体部30を有するカーボン製ヒータ3と、カーボン製断熱材料により構成されかつ坩堝とカーボン製ヒータが収容されて坩堝が保温される断熱空間部6と、断熱空間部底面60に設けられた開口部に嵌入された絶縁筒8と、絶縁筒内に挿入されかつ先端側が上記カーボン製ヒータに接続されたカーボン製ヒータ電極3とを備え、上記サファイア原料融液10から回転引き上げ法によりサファイア単結晶を製造するサファイア単結晶育成装置であって、上記絶縁筒8の内径とカーボン製ヒータ電極3の外径について、絶縁筒とヒータ電極の間で放電が発生しない関係に設定されていることを特徴とする。 (もっと読む)


【課題】結晶性の高いAlxGa1-xN(0≦x≦1)結晶を成長させる方法を提供する。
【解決手段】本AlxGa1-xN結晶の成長方法は、下地基板10を準備する工程と、Alを含有したGa融液3への窒素の溶解5がされた溶液7を下地基板10に接触させて、下地基板10上に少なくとも1層のAlxGa1-xN結晶20を成長させる工程と、を備える。ここで、下地基板10上に、第1層のAlxGa1-xN結晶21としてAlN結晶、第2層のAlxGa1-xN結晶22としてAlx2Ga1-x2N(0<x2<1)結晶、第3層のAlxGa1-xN結晶23としてGaN結晶を順次成長させることができる。 (もっと読む)


本発明は、化学気相成長法を用いて基板(14)をコーティングするデバイス、特にダイヤモンド又はシリコンで基板をコーティングするデバイスであって、複数の細長い熱伝導体(2)から構成される熱伝導体アレイが、ハウジング(10)内に提供され、前記熱伝導体が、第1の電極(1)と第2の電極(8)との間に延在し、熱伝導体(2)が、その一端に取り付けられた緊張装置によって個別にぴんと張った状態に保持されるデバイスに関する。熱伝導体(2)の寿命を延ばすために、本発明は、緊張装置が緊張ウェイト(G)を有する傾斜アーム(5)を備え、熱伝導体(2)が前記傾斜アームの第1の端部(E1)に取り付けられ、その第2の端部がほぼ水平軸(H)周りに枢動可能に装着されることを提案する。
(もっと読む)


【課題】Ga融液を用いる液相法において、融液に原料以外の不純物を添加することなく、また、結晶成長装置を大型化することなく、転位密度が低く結晶性が高いGaN結晶の成長方法を提供する。
【解決手段】本GaN結晶の成長方法は、一主面10mを有するGaxAlyIn1-x-yN種結晶10aを含む基板10を準備する工程と、基板10の主面10mにGa融液3に窒素の溶解5がされた溶液7を接触させて、1050℃以上1250℃以下の雰囲気温度下、2μm/hr以下の結晶成長速度で、主面10m上にGaN結晶20を成長させる工程と、を備える。 (もっと読む)


反応炉の上流部に位置させたハロゲン化コバルトを含む第1先駆物質、反応炉の下流部に位置させたゲルマニウムを含む第2先駆物質、反応炉の下流部に位置させた基板を不活性ガス雰囲気で熱処理して、基板上にxが0.01以上0.99未満の値を有する単結晶体のCoGe1−xナノワイヤが形成される。また、基板としてグラフェンまたは高配向熱分解性黒鉛基板を用い、基板上に対して垂直配向性を有し、均一なサイズの高密度ゲルマニウムコバルトナノワイヤ構造体を提供することにより、ゲルマニウムコバルトナノワイヤを電界放出エミッタとして、ゲルマニウムコバルトナノワイヤが形成された基板を電界放出ディスプレイの陰極パネルの透明電極として使用できる。 (もっと読む)


【課題】同一のSiC薄膜形成プロセスの進行中に、基板の前処理段階(昇温過程および高温過程)および基板上への薄膜の成長段階において、あるいは更に降温段階において、供給する炭化水素ガス種を瞬時に切り替えて、各段階に最適な種類の炭化水素ガスを供給できるCVDによるSiC薄膜形成装置を提供する。
【解決手段】SiC単結晶の薄膜を成長させる基板14を保持するサセプタ12を内蔵したCVD反応容器10、および該CVD反応容器にそれぞれ接続されたSi原料ガスの供給器26および炭化水素ガスの供給器28を備えたSiC薄膜形成装置において、上記炭化水素ガスの供給器は、それぞれ相互に独立して供給を制御可能な複数の炭化水素ガス源C1、C2、C3に接続されている。 (もっと読む)


【課題】本発明は、貴金属酸化物、貴金属またはハロゲン化貴金属を前駆物質として用いて単結晶基板の表面に対して方向性を有する貴金属ナノワイヤ及びその製造方法を提供する。
【解決手段】反応炉の前端部に配置した前駆物質と、反応炉の後端部に配置した半導体または不導体単結晶基板を、不活性ガスが流れる雰囲気下で熱処理して前記単結晶基板の表面に垂直または水平に成長する貴金属単結晶ナノワイヤ及びその製造方法。本発明は、触媒を使用しない気相輸送法を利用して貴金属ナノワイヤを製造することができ、その工程が簡単でかつ再現性があり、大量生産に適するメリットがある。製造されたナノワイヤは、欠陥や不純物を包含しない完璧な単結晶状態の高純度かつ高品質の貴金属ナノワイヤである。貴金属ナノワイヤは、単結晶基板の表面に対して特定の方向性を有し、その方向性及び配列を制御することができる。 (もっと読む)


【課題】成長面内における膜質および内部応力などが均一にして、完全性の高い、直径1インチ(2.54cm)以上の大面積の単結晶膜を得ることができるエピタキシャルダイヤモンド膜および自立したエピタキシャルダイヤモンド基板の製造方法を提供する。
【解決手段】排気系51、マスフローコントローラ52を備え、装置中央部には、水冷台53上部に設置された下地基板40の上方に、直流電源56が接続された平板型陰極55が配置され、さらに、接地と浮動電位との切り替えが可能に構成された可動式のMo製シャッタ57を備えた平行平板型対向電極直流プラズマCVD装置50において、平行平板型対向電極55間に発生する直流プラズマを用いて、エピタキシャルダイヤモンド膜および自立したエピタキシャルダイヤモンド基板を製造する。 (もっと読む)


【課題】昇華用原料として用いる炭化珪素と異なる多形を有すると共に、他種類の多形の炭化珪素の混入の少ない炭化珪素単結晶を実用的な成長レートで製造することができる炭化珪素単結晶の製造方法を提供する。
【解決手段】反応容器10内の第一位置に第一の炭化珪素を含む昇華用原料40を収容し、反応容器10内の第二位置に、第一の炭化珪素よりも昇華温度が高く且つ第一の炭化珪素と異なる多形の第二の炭化珪素単結晶からなる種結晶50を配置した状態で、下式(1)を満たすように反応容器10を加熱することによって、昇華させた昇華用原料40を、種結晶50上に炭化珪素単結晶として再結晶化させる。・式(1)T1≧T2〔式(1)中、T1は、第一位置の温度(℃)を表し、T2は第二位置の温度(℃)を表す。〕 (もっと読む)


【課題】マイクロパイプの発生を抑制できる上に、更に昇華用原料として用いる炭化珪素と異なる多形を有すると共に、他種類の多形の炭化珪素の混入の少ない炭化珪素単結晶の製造方法を提供する。
【解決手段】反応容器10内の第一位置に第一の炭化珪素を含む昇華用原料40を収容し、第二位置に、第一の炭化珪素よりも昇華温度が高く且つ第一の炭化珪素と異なる多形の第二の炭化珪素単結晶からなる種結晶50を配置した状態で、下式(1)を満たすように反応容器10を加熱することによって、昇華用原料40を種結晶50上に再結晶化させ、加熱が、第一位置側に配置した第一加熱手段21および第二位置側に配置した第二加熱手段20を利用して実施される。・式(1)T1≧T2〔式(1)中、T1は、第一位置の温度(℃)を表し、T2は第二位置の温度(℃)を表す。〕 (もっと読む)


【課題】高純度で光学特性に優れた窒化アルミニウム単結晶基板を提供する。
【解決手段】無機ベース基板11上に、第一の窒化アルミニウム単結晶層12を成長させて、第一の積層体15を製造し、第一の積層体15から無機ベース基板11を分離して窒化アルミニウム単結晶自立基板16を準備する。前記窒化アルミニウム単結晶自立基板16は、酸素濃度を、例えば、2.5×1017atom/cmを超え2.0×1019atom/cm以下とする。続いて、前記窒化アルミニウム単結晶自立基板16の温度を1400〜1900℃の範囲に制御し、かつ、該窒化アルミニウム単結晶自立基板16の窒素極性を有する面14上に、ハロゲン化アルミニウムガス、および窒素源ガスを供給し、窒化アルミニウム単結晶層17を成長させて積層体18を製造し、該窒化アルミニウム単結晶自立基板16を分離することにより、窒化アルミニウム単結晶基板19を製造する。 (もっと読む)


【課題】 昇華用原料の表面部や底部に炭化珪素の多結晶が析出することをさらに効果的に抑制する。
【解決手段】炭化珪素単結晶の製造装置1は、黒鉛製坩堝10と、黒鉛製坩堝10の少なくとも側面を覆う石英管20と、石英管20の外周に配置された誘電加熱コイル30とを有する。黒鉛製坩堝10は、支持棒40により、石英管20の内部に固定される。黒鉛製坩堝10は、断熱材11で覆われている。黒鉛製坩堝10は、反応容器本体50と、蓋部60とを有する。反応容器本体50は、炭化珪素を含む種結晶70と、種結晶70の成長に用いられる昇華用原料80とを収容する。黒鉛製坩堝10内の底部には、断熱層90が設けられる。断熱層90は、黒鉛製坩堝10の底部に密着する。昇華用原料80は、断熱層90の上に断熱層90と接して配置される。 (もっと読む)


【課題】 炭化珪素単結晶の表面の炭化を防止しつつ、昇華用原料の底部に炭化珪素の多結晶が析出することを抑制する。
【解決手段】 炭化珪素単結晶の製造装置1では、黒鉛製坩堝10の上下方向の断面視において、黒鉛製坩堝10の上下方向の長さよりも誘電加熱コイル30を長くし、反応容器本体50の底部52を誘電加熱コイル30の中央部付近に配置したことにより、誘電加熱コイル30によって自然に形成される温度分布における最高温度領域Stmaxを反応容器本体50の底部52に対応させている。炭化珪素単結晶の製造装置1は、昇華用原料80が昇華するに連れて、黒鉛製坩堝10内における最高温度領域Stmaxを黒鉛製坩堝10の底部51から種結晶70と対向する昇華用原料80の上面部80aに向けて変化させる。 (もっと読む)


【課題】Li濃度が極低濃度で、抵抗率の高い各種デバイス用酸化亜鉛単結晶の製造方法を提供する。
【解決手段】実質的にLiを含まない原料26および鉱化材溶液を用いるとともに、過酸化物の存在化で酸素分圧を高めて水熱合成することにより、所望の酸化亜鉛単結晶を得る。過酸化物は、過酸化水素に代表される過酸化物を少なくても1種以上、分解で生じる酸素換算で鉱化材溶液に対し0.02〜0.5モル/リットルの範囲の濃度で加える。 (もっと読む)


【課題】 反りが少なくクラックが発生しない導電性の窒化物半導体結晶基板及びその製造方法を提供する。
【解決手段】 下地基板の上に、幅或いは直径sが10μm〜100μmであるドット被覆部或いはストライプ被覆部を間隔wが250μm〜10000μmであるように並べたマスクを形成し、HVPE法によって成長温度が1040℃〜1150℃であって、5/3族比bが1〜10であるような3族、5族原料ガスと、Siを含むガスとを供給することによって下地基板の上に窒化物半導体結晶を成長させ、下地基板を除去することによって、比抵抗rが0.0015Ωcm≦r≦0.01Ωcm、厚みが100μm以上、反りの曲率半径Uが3.5m≦U≦8mの自立した導電性窒化物半導体基板を得る。 (もっと読む)


【課題】単結晶ナノ構造を基板の上に成長させる方法を提供する。
【解決手段】基板1の主表面上にパターン2を最初に形成する工程であって、パターン2は基板1の表面まで延びた開口部を有する工程と、パターン2の開口部中の、露出した主表面の上に、金属3を供給する工程と、開口部をアモルファス材料4で、少なくとも部分的に埋める工程と、アモルファス材料4と金属化合物3とを、300℃と1000℃の間の温度でアニールし、金属媒介結晶化により、アモルファス材料4を単結晶材料5に変える工程と、を含む。 (もっと読む)


【課題】6H型の結晶多形単一で形成される炭化ケイ素単結晶を製造する。
【解決手段】昇華用原料が昇華する温度T1まで坩堝が加熱された後、坩堝内の不活性雰囲気の圧力が大気圧よりも低い圧力P1まで減圧され、種結晶上に炭化ケイ素単結晶の凸面が形成されるまで圧力P1が維持される工程S1と、不活性雰囲気の圧力が圧力P1よりも上昇させられる工程S2と、工程S2の後、温度T1よりも高い温度T2まで坩堝が加熱された後、昇華用原料の昇華が始まるまで坩堝内の不活性雰囲気の圧力が減圧される工程S3とを有する。 (もっと読む)


【課題】 液相法によって所要機能を有するペロブスカイト酸化物薄膜を製造する方法、及びペロブスカイト酸化物薄膜を提供する。
【解決手段】 成膜対象のペロブスカイト酸化物を主成分とし、平均直径が略5nm以上略15nm以下の適宜直径のナノ結晶粒子を所定溶媒中に分散させた分散液を調製し(ステップS1)、この分散液中に、対象電極としての所定材料の基板と対向電極とを浸漬させ、両電極間に所定の電圧を印加することによって前記基板の表面に前記ナノ結晶粒子を、乾燥時の厚さが数十nm〜数百nmとなるように堆積させる(ステップS2)。そして、この基板を略400℃以上略800℃以下の適宜温度で焼成する(ステップS3)。 (もっと読む)


161 - 180 / 559