説明

Fターム[4K013CA13]の内容

溶融状態での鋼の処理 (7,585) | ガス処理及びガス処理装置 (872) | 上吹き (107) | 上下吹き (30)

Fターム[4K013CA13]に分類される特許

1 - 20 / 30


【課題】溶銑を転炉で予備脱燐処理し、次いで、この溶銑に別の転炉で脱炭精錬を行って溶鋼を製造するにあたり、上吹きランスの流路内での発熱・燃焼を危惧することなく、高い着熱効率及び生産性で溶鋼を製造する。
【解決手段】精錬剤供給路と、第1の燃料供給路と、燃焼用ガス供給路と、脱燐用酸化性ガス供給路と、第2の燃料供給路と、を構成する第1の上吹きランス1を用い、第1及び第2の燃料供給路からの燃料により火炎を形成させながら、精錬剤供給路から不活性ガスともに酸化鉄、石灰系媒溶剤、可燃性物質の1種以上を供給しながら脱燐用酸化性ガスを吹き付けて溶銑を予備脱燐処理し、次いで、溶銑を別の転炉に装入し、精錬用酸素ガス供給路と、燃料供給路とを有する第2の上吹きランスを用い、燃料供給路からの燃料により火炎を形成させながら、精錬用酸素ガス供給路から酸素ガスとともに粉状媒溶剤を供給して溶銑を脱炭精錬して溶鋼を製造する。 (もっと読む)


【課題】耐衝撃性及び表面性状に優れ、かつニッケル製錬プラント及び海洋構造物等への使用に耐えるFe−Ni−Cr−Mo合金を提供する。
【解決手段】質量%で、C:0.001〜0.015%、Si:0.01〜0.30%、Mn:0.01〜0.50%、P:0.020%以下、S:0.0015%以下、Ni:30.00〜32.00%、Cr:26.00%を超え28.00%以下、Mo:6.00〜7.00%、Cu:1.00%を超え1.40%以下、Al:0.001〜0.10%、N:0.15〜0.25%、B:0.0005〜0.0030%、Ca:0.0001〜0.0020%、Mg:0.0001〜0.0050%、O:0.0001〜0.0050%、残部:Feおよび不可避不純物からなる。 (もっと読む)


【課題】転動疲労寿命の長い軸受材料を提供すると共に、該軸受材料の製造方法を提供することを目的とする。
【解決手段】被検面積が3000mmである場合に、(長さ×幅)1/2で算出される介在物平均径が3μm以上である酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の合計の個数が、1000mmあたり100個以下、前記介在物平均径が10μm以上の酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の合計の個数が、1000mmあたり2個以下で、且つ、前記介在物平均径が3μm以上の酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の全体の90%以上が、酸化マグネシウム濃度が5質量%以下である軸受材料は、転動疲労寿命が優れている。 (もっと読む)


【課題】 極低硫鋼を製造することを目的として転炉から出鋼された溶鋼に対して、CaO含有物質を脱硫剤の主たる構成物質として用いて取鍋内で取鍋精錬法による脱硫処理を施すにあたり、CaF2を脱硫剤の一部として使用しなくても、また、脱硫剤がプリメルトフラックスでなくても、添加した脱硫剤を迅速に滓化させ、効率良く脱硫する。
【解決手段】 脱硫処理及び脱燐処理の施された溶銑の転炉での脱炭精錬によって得られ、転炉から取鍋2に出鋼された溶鋼9を、当該溶鋼への攪拌用ガスの吹き込みにより攪拌しながら、取鍋内に添加されたCaO含有物質を脱硫剤として用いて取鍋内で脱硫処理する溶鋼の脱硫処理方法であって、脱硫処理後の取鍋内スラグ10の組成を、SiO2の含有量が5〜15質量%、[(質量%CaO)+(質量%MgO)]/(質量%Al23)が1.5〜3.0で、且つCaF2を実質的に含有しない組成に調整する。 (もっと読む)


【課題】 炭素濃度が0.05質量%以下、マンガン濃度が0.5質量%以上の低炭素高マンガン鋼を真空脱炭処理によって溶製するにあたり、マンガンの酸化ロスを抑制した状態で、マンガン源として炭素を含有するマンガン系合金鉄を使用することのできる、低炭素高マンガン鋼の溶製方法を提供する。
【解決手段】 本発明に係る低炭素高マンガン鋼の溶製方法は、真空脱ガス設備1の真空槽内の溶鋼3に酸素源を供給して溶鋼に真空脱炭処理を施し、炭素濃度が0.05質量%以下、マンガン濃度が0.5質量%以上である低炭素高マンガン鋼を溶製する方法であって、炭素を含有するマンガン系合金鉄を前記溶鋼中に吹き込みながら溶鋼に真空脱炭処理を施すことを特徴とする。 (もっと読む)


【課題】粗脱炭で生成されるスラグの熱を電気炉での溶解に有効利用することができ、またスラグ中に含まれるクロム分を溶銑の成分として利用することができるステンレス鋼の製造方法を提供する。
【解決手段】ステンレス鋼の溶銑2を転炉4で酸素吹精して粗脱炭し、粗脱炭で生成されるスラグ10を容器11に排滓する。排滓されたスラグ10をホットチャージ状態で電気炉に装入し、装入されたスラグ10をステンレス製鋼用の原料とともに溶解する。当該原料の組成を、FeCr:10重量%以上、Si:0.5〜1.5重量%とし、FeCr中のSi含有量を3重量%以上とすることが好ましい。 (もっと読む)


【課題】 高い生産性で効率良く、しかも、CaO−Al23系介在物の含有量が少なく、耐硫化物腐食割れ性に優れた清浄鋼を2段階のCa添加によって製造する。
【解決手段】 本発明の耐硫化物腐食割れ性に優れた清浄鋼の製造方法は、転炉から取鍋への出鋼時または出鋼後に溶鋼にAlを添加して溶鋼を脱酸し、先ず、この取鍋内の溶鋼にCaOを含有するフラックスを添加して脱硫処理を施すとともに、この脱硫処理時にCa含有金属を添加し、次いで、取鍋内の溶鋼に真空脱ガス処理を施し、更に、真空脱ガス処理後の取鍋内の溶鋼にCa含有金属を添加し、その後、該溶鋼を鋳造することを特徴とする。 (もっと読む)


【課題】含クロム溶鋼の減圧精錬方法において、連続的に測定した溶鋼温度の情報を基に、溶鋼中[C]濃度を把握し、脱炭条件を制御することで、クロムの酸化損失を少なくする。
【解決手段】減圧下で含クロム溶鋼に酸素ガスと不活性ガスを吹き込んで脱炭精錬を行う方法において、減圧開始時から溶鋼温度を連続的に測定し、測定した溶鋼温度及び計算式を用いて、自然脱炭基、酸素脱炭基および拡散脱炭基の各期毎で精錬条件の制御を行うことにより、脱炭終了時の[C]濃度の予測精度を向上できるとともに、脱炭反応の進行状況を的確に把握することができ、かつ脱炭酸素効率を安定的に高位に保つことができる。 (もっと読む)


【課題】 底部に攪拌用ガスの吹込みプラグを有する溶鋼精錬用取鍋において、従来に比較して格段に攪拌強度を高めることのできる溶鋼精錬用取鍋を提供するとともに、この溶鋼精錬用取鍋を使用した、強攪拌下での溶鋼の精錬方法を提供する。
【解決手段】 本発明の溶鋼精錬用取鍋1は、底部にガス吹き用の吹込みプラグ4を2つ以上有する取鍋であって、吹込みプラグの設置される取鍋底部の側壁の内径をDとしたときに、隣接する吹込みプラグの中心間の距離が、D/6以上D/4以下であることを特徴とし、本発明の精錬方法は、前記取鍋に収容された溶鋼5を、下記の(1)式により算出される溶鋼攪拌動力密度εが1000W/トン以上となる攪拌条件下で攪拌することを特徴とする。
ε=(0.0285×QAr×T/Wm)×log[1+(760×H)/(148×P)]…(1) (もっと読む)


【課題】溶鋼加熱装置付きの取鍋精錬において、溶鋼撹拌に上吹きガスに加え、底吹きガスの吹き込みを併用しても、0.0005〜0.0014質量%という低硫黄濃度領域への脱硫が安定した操業状態で可能な溶鋼の脱硫方法を提供する。
【解決手段】取鍋1に、耐火物製蓋2、溶鋼加熱手段4、脱硫剤の吹き込み用上吹きランス8及び溶鋼撹拌用ガスの上吹きランス6を備えた取鍋精錬装置を用い溶鋼を脱硫する技術を改良した。その内容は、前記取鍋の底部から薄板状の流れで不活性ガスを吹き込み溶鋼を撹拌するものである。その場合、スリット状貫通孔を有する羽口9の数を2個以下としたり、該スリット状貫通孔のスリットの短幅が0.20〜0.35mmとするのが好ましい。 (もっと読む)


【課題】炭素を低減するための高クロムフェライト系ステンレス鋼の精錬方法を提供する。
【解決手段】電気炉(EAF)−精錬炉(AOD)−二次精錬(VOD)−成分調整(LT)−タンディッシュ−連続鋳造工程を経て、Cr:5〜30%、Ti:0.1%以下、C:0.02%以下のフェライト系ステンレス鋼の精錬方法において、前記二次精錬のVOD設備でVODタンクの外壁に振動センサを取り付けるステップと、前記振動センサから出力された周波数の中から特定の周波数のみを測定するステップと、前記二次精錬(VOD)中に酸素吹錬脱炭機と真空脱炭機の底吹き撹拌強度を調整するステップとからなる。 (もっと読む)


【課題】 吹き込み流量の可変域を大きくすることが可能であって、しかも、作製コストが安価である環状羽口において、吹き込みガス流量を増加させたときでも損耗速度を低減することのできるガス吹き込み羽口構造を提供する。
【解決手段】 上記課題は、管体部5と該管体部の内側に設けられる軸心部2とを有し、管体部と軸心部との間の環状の間隙からガスを噴出する環状羽口1と、前記管体部に接触した状態で前記羽口の周囲に配置される羽口耐火物7と、で構成されるガス吹き込み羽口構造において、前記羽口耐火物を、500℃〜1300℃における曲げ強度が4MPa以上であり、且つ、耐火物を1400℃に昇温して氷水中に浸漬する耐スポーリング試験後の曲げ強度が3MPa以上である炭素含有耐火物とするガス吹き込み羽口構造によって解決される。 (もっと読む)


少なくとも1種の卑金属と少なくとも1種の付加的な合金成分とを含有する金属溶融物を溶融容器の内部で前記金属溶融物を覆うスラグの存在下に溶製する方法。金属溶融物の合金成分を富化するために、合金成分を5〜10重量%、溶融冶金上無害な揮発性成分を5〜10重量%、硫黄を5重量%以下、及びその他の合金成分とスラグ生成材との少なくとも一方を含有する合金成分含有添加材料を前記金属溶融物に供給する。この添加材料は鉱石からの浸出処理と沈殿により水酸化物及び/又は炭酸塩の形態で得られる。本発明は更に係る添加材料にも関する。
(もっと読む)


【課題】二次精錬装置が如何なる状態にあっても最適の撹拌条件が確保でき、且つ該撹拌条件の変更により溶鋼中の介在物量及び種類を安定して制御可能なステンレス鋼の精錬方法を提供する。
【解決手段】二次精錬装置にVOD真空脱ガス装置を用いるステンレス溶鋼の精錬方法は、高クロム含有溶鋼の温度T、浴深さZ及びVOD真空脱ガス槽装置の雰囲気圧力Pを実用範囲に保持し、該高クロム含有溶鋼の下記(1)式で表される撹拌動力密度εと撹拌処理時間tとの積で定義する撹拌強度Sが12000〜15000の範囲になるよう、底吹きガスの流量Q及び/又は撹拌処理時間を調整する。 ε=0.0285×Q×(T/W)×log(1+(Z/148)×(1.013×10/P)) ・・(1) S=ε × t ・・(2) (もっと読む)


【課題】 大掛かりな設備投資を要することなく、また造滓材および耐火物の比例費増加を生じることなくC濃度を低減できる溶鋼の脱炭方法を提供する。
【解決手段】 取鍋が収容される槽内を減圧雰囲気または真空雰囲気とする。取鍋に設けられる2つのガスプラグから取鍋内の溶鋼に吹込む底ガスの流量変化は、一方の最大値Xmaxおよび最小値Xminと他方の最小値Yminおよび最大値Ymaxとがそれぞれ対応するようにする。最小値と最大値との流量比Xmin/YmaxおよびYmin/Xmaxを、0.50倍以下にして溶鋼を撹拌する。 (もっと読む)


【課題】耐火物の溶損を助長することなく、炉内での総発熱量を増加させることによって、安価な鉱石の使用量を増加できる溶融還元方法を提供する。
【解決手段】鉄浴型溶融還元炉の軸心上に設置された酸化性ガスを供給する上吹きランスとは別に、粉粒状の鉱石を鉄浴型溶融還元炉内に装入する鉱石装入ランスを設置し、鉱石装入ランスの先端部に鉱石の流通孔を設けるとともに燃料と酸素を吹込む噴射孔からなるバーナーを設け、そのバーナーから発生する火炎の中を通過するように鉱石を鉄浴型溶融還元炉内に装入する。 (もっと読む)


【課題】炭素含有量の少ない含クロム溶鋼を高効率で製造可能な含クロム溶鋼の製造方法を提供する。
【解決手段】精錬炉の内部に収容した含クロム溶鋼中に酸素ガスおよび非酸化性ガスを含む混合ガスを吹き込んで脱炭する大気精錬後に、該精錬炉内を減圧して含クロム溶鋼中に酸素ガスを含む攪拌ガスを吹き込んで脱炭および溶鋼の昇熱を行なうと共に脱炭後に還元剤を投入する減圧精錬を行なう。この場合に、減圧精錬では、前記精錬炉内を2,500〜7,000Paまで減圧し、溶鋼の昇熱に必要な酸素ガス量を、精錬炉内の含クロム溶鋼1,000kg当り28〜43m3/h(0℃、1気圧換算)で溶鋼中へ吹き込む。 (もっと読む)


【課題】耐候性鋼において、従来の微量添加元素による性能向上に代わり、コストアップにならない元素や化合物を利用することにより、耐候性鋼の性能、特に、長期のさび安定化能を改善すること。
【解決手段】C:0.03%〜0.18%、Si:0.1%〜0.65%、Mn:0.2%〜1.4%、P:0.03%以下、S:0.02%以下、Cu:0.3%〜2%、Ni:0.2%〜6%、N:0.002%〜0.01%、Al:0.01%〜0.5%、O:0.005%以下を含有し、残部Feおよび不可避的不純物からなるとともに、粒子長軸長さ0.001〜1μmの窒化アルミニウムを5〜50質量ppm含有することを特徴とするさび安定化能を高めた耐候性鋼、および、溶鋼中に窒化アルミニウムを添加して製造することを特徴とする耐候性鋼の製造方法。 (もっと読む)


【課題】 高清浄度鋼の製造方法において、非金属介在物の低減を十分に行うことができるようにする。
【解決手段】溶鋼上のスラグに固体炭素を投入する5分以上前に、溶鋼を脱酸するのに必要な化学量論値以上の量のAlを溶鋼に投入して50W/ton以上の攪拌動力密度で攪拌した後、炭素成分が90%以上で且つ粒度が1mm〜15mmとなる固体炭素をスラグ上に溶鋼1ton当たりにつき0.15kg〜0.40kg投入し、50W/ton以下の攪拌動力密度で10分以上攪拌する。 (もっと読む)


【課題】スラグ成分組成、溶鋼の昇熱処理および攪拌処理の適正化により、脱硫と清浄化とを同時に促進させ、極低硫高清浄鋼を効率よく安定して溶製できる方法を提供する。
【解決手段】溶鋼を下記の工程1〜4により処理する極低硫高清浄鋼の溶製方法である。工程1:大気圧下において取鍋内溶鋼にCaO系フラックスを添加する工程、工程2:工程1の後に取鍋内溶鋼中に攪拌ガスを吹き込んで攪拌するとともに、溶鋼に酸化性ガスを供給し、生成した酸化物をCaO系フラックスと混合する工程、工程3:酸化性ガスの供給を停止し、取鍋内溶鋼中に攪拌ガスを吹き込んで脱硫および介在物除去を行う工程、工程4:工程3の後に溶鋼をRH真空脱ガス装置を用いて処理するに際し、RH真空槽内に酸化性ガスを供給して溶鋼温度を上昇させる工程。前記の溶製方法において、工程1または工程2においてAlを添加し、工程4を省略してもよい。 (もっと読む)


1 - 20 / 30