説明

Fターム[4K013DA12]の内容

溶融状態での鋼の処理 (7,585) | 複合処理、連続処理 (691) | 複合処理 (682) | 真空処理、減圧処理を含む複合処理 (134)

Fターム[4K013DA12]に分類される特許

61 - 80 / 134


【課題】真空精錬設備における水封式真空ポンプのキャビテーションを防止する真空脱ガス方法を提供する。
【解決手段】真空精錬設備におけるエジェクター式真空排気装置および水封式真空ポンプを使用する真空脱ガス方法であって、前記水封式真空ポンプで吸入し排気した排ガスを吸入ラインに循環させて前記水封式真空ポンプの吸入側流量をほぼ一定にさせることにより該水封式真空ポンプのキャビテーションを防止することを特徴とする真空脱ガス方法。 (もっと読む)


【課題】 屑鉄を主原料とする電炉製鋼方法において、原料中のMnは大半が酸化スラグと共に廃棄されている。該Mnの一部を製品溶鋼に還元回収する。
【解決手段】 原料溶解に引き続き通常の酸化精錬を行い、酸化性スラグの過半を炉内に残留させ、出鋼に際して該スラグを溶鋼と共にレードルに移す。同時に該スラグ中の低級酸化物量に対応した還元剤を投入する。レードルに上下気密カバーを装着して減圧し、ガスバブリングを行って還元精錬し、スラグ中のMnを還元回収する。
酸化精錬による脱リンの多くは復リンしP含有量は増加するが、中心偏析が発生せず且つ凝固組織がチル晶と柱状晶から成る連続鋳造方法により鋼片とする。その結果不純物Pの有害元素としての作用が軽減される。
(もっと読む)


【課題】 ステンレス鋼のLF精錬の操業時にCaSiワイヤーを溶鋼に投入することによりCa添加量を調整する方法において、CaSiワイヤーの投入速度を改善し、Ca添加の歩留りを向上させることによりCaSiワイヤーの投入量を低減させる方法を提供することである。
【解決手段】 電気炉で原料のスクラップを溶解および精錬し、得られたステンレス鋼の溶鋼をさらに取鍋精錬し、この精錬の終期にCaSiワイヤーを溶鋼中に投入してCa添加を行って溶鋼の成分を調整する。すなわち、CaSiワイヤーの投入速度を最適の100m/mmの速度にすることで、投入したCaSiワイヤーを取鍋底部に到達させて順次に溶解せしめ、溶鋼中へのCa添加量の歩留りを最大の6.7%に向上させた。 (もっと読む)


【課題】精錬工程のオペレータの経験に頼ることなく、タンディッシュに注湯される溶鋼の温度を適切に制御することができる鍋内の溶鋼温度制御方法を提供する。
【解決手段】溶鋼をタンディッシュまで運搬する鍋1の底部に熱電対6を埋め込むとともに、この熱電対6により検出された温度データを発信する無線送信器7が封入された真空断熱容器8を鍋1の外側に取り付る。この無線送信器7から発信される温度データを、各位置に配置した受信用アンテナ25によって受信して鍋内の溶鋼温度を連続的または断続的に測定し、鍋内の溶鋼温度が適正温度となるように、精錬工程において溶鋼温度を制御する。精錬工程における溶鋼温度の制御は、例えば溶鋼中への酸素吹き込み量の制御によって行うことができる。 (もっと読む)


【課題】還元スラグを有効に活用するために、還元スラグを用いた鉄鋼製造に有用な脱リン用造滓材を提供すること、及び該脱リン用造滓材の製造方法を提供すること。
【解決手段】還元精錬時に発生する還元スラグ1を取り出し、脱硫工程200で前記還元スラグ1に水分を接触させて脱硫して脱硫還元スラグとし、混合工程250で脱硫還元スラグとFeO成分を混合し、成形工程300で前記混合物を所定形状に成形して成形物とし、固化工程400で前記成形物を二酸化炭素により固化してCO固化体からなる造滓材2とし、該造滓材2を二次精錬時の初期脱リン用造滓材として用いる。 (もっと読む)


【課題】還元スラグを有効に活用するために、還元スラグを用いた鉄鋼製造に有用な脱酸用造滓材を提供すること、及び該脱酸用造滓材の製造方法を提供すること。
【解決手段】還元精錬時に発生する還元スラグ1を取り出し、脱硫工程200で前記還元スラグ1に水分を接触させて脱硫して脱硫還元スラグとし、混合工程250で脱硫還元スラグとAl及び金属アルミニウムを混合し、成形工程300で前記混合物を所定形状に成形して成形物とし、固化工程400で前記成形物を二酸化炭素により固化してCO固化体からなる造滓材2とし、該造滓材2を二次精錬時の脱酸用造滓材として用いる。 (もっと読む)


【課題】母材靭性に優れた鋼材を提供する。
【解決手段】C:0.03〜0.18%、Si:0.08%以下、Mn:1.1〜1.8%、P:0.020%以下、S:0.004%以下、O:0.0010〜0.0050%、N:0.004%以下、Nb:0.001〜0.020%、Al:0.0003〜0.0030%、Ti:0.006〜0.030%を含有し、直径1μm以上のTi−Mn−Al−O系介在物、Al−O系介在物、それら以外の介在物それぞれの単位面積あたりの個数nTiO、nAlO、nMxOが下記(1)〜(4)の条件を満足し、直径40μm以上の介在物の1kgあたりの個数が500個/kg以下である鋼材。(nTiO+nAlO)/(nTiO+nAlO+nMxO)≧0.7 ・・・(1)nTiO/(nTiO+nAlO)≧0.7 ・・・(2)nTiO:5.0〜50個/mm2 ・・・(3)nAlO:0.2〜20個/mm2 ・・・(4) (もっと読む)


【課題】非金属介在物の低減を十分行って、清浄度の高い鋼を製造する高清浄度鋼の製造方法を提供する。
【解決手段】転炉から出鋼した溶鋼に対して取鍋精錬を行った後、還流式真空脱ガス装置で真空脱ガス精錬することで高清浄度鋼を製造する高清浄度鋼の製造方法において、取鍋精錬後のAlの成分値が0.030%〜0.070%となるように精錬すると共に、取鍋精錬後のスラグの組成であるFeO、MnO、CaO、SiO2、MgO、Al23、TiO2を最適化する。また、真空脱ガス精錬の際に、攪拌時間及び溶鋼還流量を最適化する。 (もっと読む)


【課題】真空脱ガス工程における復硫現象を抑制する技術を提供する。
【解決手段】(a)取鍋精錬〜真空脱ガスの溶鋼温度[℃]を1560〜1660とし、(b)取鍋精錬終了〜真空脱ガス開始の時間[min]を60以下とする。(c)攪拌動力[Watt/ton]を15〜110とし、(d)環流流量[ton/min]を130〜195とする。(e)Al投入量[kg/ton]を0.5〜2.0とし、(f)酸素吹付量[Nm3/ton]を0.4〜2.0とする。(g)取鍋精錬工程終了〜真空脱ガス工程終了のスラグ厚み[mm]を200〜400とし、下記式を満足する。(h)取鍋精錬工程におけるスラグ組成を所定の組成とし、スラグ融点を取鍋内溶鋼の温度以下とする。
TL≧11667 L2-9117 L+3030
TL[℃]:前記スラグの液相線温度、L[m]:前記スラグの厚み (もっと読む)


【課題】溶鋼のレードルにおける脱酸・脱硫精錬において、大量の塩基性スラグの廃棄、廃棄に際してスラグ中のフッ素Fの地中への溶出問題および塩基性スラグの風解現象による煤塵問題等を解決し、廃棄スラグの転用やスラグ量自体の大幅削減を図るレードル精錬方法を提供する。
【解決手段】レードル4には予め塩基度が1.5以下となる造滓材を装入しておき、溶解炉1において塩基性スラグ下で酸化精錬された溶鋼のみをレードルに出鋼し、同時に脱酸剤を投入し、減圧下でガスバブリングして溶鋼とスラグを反応させ、脱酸・脱非金属介在物を進めるが脱硫はなされなかった精錬終了後の溶鋼を特定の連続鋳造方法による鋳造機11に供し、無偏析且つ主として柱状晶から成る鋼片を製造し、S%の過剰を許容する。該連続鋳造方法は湾曲式の連続鋳造において芯部が凝固するまでに1/4円を超え3/4周まで引き上げて引く抜き、中空鋳片を形成し、圧下して中実とする。 (もっと読む)


【課題】タンディッシュノズルの閉塞および連鋳スラブや冷延板での表面疵発生を防止しながら、凝固組織を微細等軸晶化し、鋼板にける加工性を顕著に改善することのできるフェライト系ステンレス鋼スラブを提供する。
【解決手段】MgO含有率が40〜90質量%のMgO−CaO系耐火物でライニングされた精錬容器を用い、真空脱炭処理後、溶鋼にSi源およびCaOを添加してCaO−SiO2系スラグを形成させ、撹拌によりスラグ中のCr23含有量を6質量%以下かつ溶鋼中の酸素活量aOをlog(aO)≦−2.0にし、Alを添加してAl:0.05質量%以下、S:0.007質量%以下、Mg:0.0001〜0.0014質量%、Ca:0.0014質量%以下とした上で、溶鋼にTiを添加して溶鋼中におけるTiとNの濃度積が0.0007〜0.008となるように最終成分調整し、連続鋳造する。 (もっと読む)


【課題】製鋼二次精錬工程における溶鋼の脱硫方法に関し、Al23介在物による脱硫能低下を抑制することで二次精錬工程での高い脱硫率を実現し、脱硫剤使用量を少なくしても低硫域まで脱硫でき、さらに耐火物溶損も軽減する方法を提供する。
【解決手段】脱炭精錬後に転炉から取鍋へ溶鋼を出鋼する際にフェロシリコンをSi換算で溶鋼1t当たり2kg以上投入し、続く二次精錬工程の真空脱ガス設備において、Alを溶鋼1t当たり0.2kg以上投入し、溶鋼を3分以上10分以下循環した後に脱硫剤をArとともに吹き込むことを特徴とする溶鋼の脱硫方法である。CaO、CaF2、MgOおよび不可避的不純物から構成され、その組成が1.0≦CaO/CaF2≦3.0を満たし、かつMgOが10質量%以上40質量%以下である脱硫剤を使用すると好ましい。 (もっと読む)


【課題】 EF−LF−RH工程で高Ni−Fe合金鋼の極低のS、C及びSi化を図り、2次精錬でAl23非金属介在物を生成することなく、非金属介在物を低融点可塑性のスペーサタイトのMnO・Al23・SiO2に形態制御する。
【解決手段】 EFでスクラップ、合金を溶解し、LFで高塩基度スラグを用い、不純物以外の金属Alを使用せず、LFからRH終了までに精錬、脱硫、高塩基度スラグ除去し、低塩基度とAl23含有フラックスを投入してスラグ置換し、脱酸時にSi添加してLF終了し、RHで酸素吹精して脱炭、脱Siし、脱炭中は鋼中Siを残存させ、脱炭終了後に高CのMnおよびSiを投入して脱酸し、攪拌時間を置いて溶鋼の脱酸とAl23の還元を促進し、非金属介在物をスペーサタイトのMnO・Al23・SiO2に形態制御し、Si≦0.03%、C≦0.006%、S≦30ppm、O2≦60ppmの高Ni−Fe合金鋼を得る。 (もっと読む)


【課題】二次精錬装置が如何なる状態にあっても最適の撹拌条件が確保でき、且つ該撹拌条件の変更により溶鋼中の介在物量及び種類を安定して制御可能なステンレス鋼の精錬方法を提供する。
【解決手段】二次精錬装置にVOD真空脱ガス装置を用いるステンレス溶鋼の精錬方法は、高クロム含有溶鋼の温度T、浴深さZ及びVOD真空脱ガス槽装置の雰囲気圧力Pを実用範囲に保持し、該高クロム含有溶鋼の下記(1)式で表される撹拌動力密度εと撹拌処理時間tとの積で定義する撹拌強度Sが12000〜15000の範囲になるよう、底吹きガスの流量Q及び/又は撹拌処理時間を調整する。 ε=0.0285×Q×(T/W)×log(1+(Z/148)×(1.013×10/P)) ・・(1) S=ε × t ・・(2) (もっと読む)


【課題】凝固組織を微細化させ等軸晶を増大させた極低炭フェライト系ステンレス鋼、およびその製造方法を提供する。
【解決手段】溶銑を脱炭精錬した後、脱ガス精錬を行ない、さらに脱酸材を添加して脱酸し、得られた溶鋼を取鍋に収容するまでにTiとBを添加して、C:0.01質量%以下,Si:0.03〜0.3質量%,Mn:0.1〜0.5質量%,P:0.05質量%以下,S:0.01質量%以下,Cr:20〜25質量%,Ti:0.2〜0.5質量%,B:0.003〜0.08質量%およびN:0.005〜0.015質量%を含有し、残部がFeおよび不可避的不純物からなる組成を有する溶鋼を得た後、溶鋼を取鍋に収容しさらに取鍋から鋳型に鋳込む。 (もっと読む)


【課題】 Ti脱酸により冷延鋼板用素材の極低炭素鋼を製造するに当たり、表面性状及び内質に優れる冷延鋼板の素材となる含Ti極低炭素鋼の溶製方法を提供する。
【解決手段】 C含有量が0.02質量%以下で、Tiを0.02質量%以上、Caを0.0005質量%以上含有する含Ti極低炭素鋼の溶製するに際し、先ず溶鋼を真空脱炭処理し、次いでTi含有合金を添加して脱酸処理して[質量%Al]≦[質量%Ti]/10を満足する組成の脱酸溶鋼とし、その後、金属CaまたはCa含有合金を添加し、Caの添加後、更に、真空脱ガス設備にて攪拌処理を実施して、溶鋼中の全酸素濃度を0.007質量%以下に調製するとともに、溶鋼中の酸化物組成を、Ti酸化物が30質量%以上90質量%以下、CaOが10質量%以上50質量%以下、Al23 が50質量%以下、その他成分が不可避的酸化物となるように調製する。 (もっと読む)


【課題】極低炭フェライト系ステンレス鋼の溶鋼を鋳型に鋳込みさらに凝固するまでの冷却過程にて凝固組織を微細化させ、等軸晶を増大させた極低炭フェライト系ステンレス鋼、およびその製造方法を提供する。
【解決手段】溶銑を脱炭精錬した後、脱ガス精錬を行ない、さらに脱酸材を添加して脱酸し、得られた溶鋼を取鍋に収容するまでにTiとBを添加して、C:0.01質量%以下,Si:0.03〜0.3質量%,Mn:0.1〜0.5質量%,P:0.05質量%以下,S:0.01質量%以下,Cr:20〜25質量%,Ti:0.2〜0.5質量%,B:0.003〜0.08質量%,Mg:0.0005〜0.01質量%およびN:0.005〜0.015質量%を含有し、残部がFeおよび不可避的不純物からなる組成を有する溶鋼を得た後、溶鋼を取鍋に収容しさらに取鍋から鋳型に鋳込む。 (もっと読む)


【課題】 製鋼の溶解時に酸化物系非金属介在物の低減および小径化のために長時間の取鍋精錬や脱ガス処理をしなくても得られ、転がり疲労寿命に優れた機械用部品に使用される鋼を提供する。
【解決手段】 機械部品に使用する際の鋼の表面硬さが58HRC以上であり、かつ質量割合でOが20ppm以下、Alが0.010%未満を満足する機械構造用鋼であって、介在物径を(縦×横)1/2と定義するとき、その鋼中に存在する検鏡面積3,000mm2に存在する最大介在物径を有する酸化物系非金属介在物あるいは15μm以上の介在物径を有する全ての酸化物系非金属介在物の組成が質量%でSiO2:30%以上とする。 (もっと読む)


【課題】 比較的簡便に製造可能で、特にフッ素を含有しなくても高効率で溶融鉄の脱硫処理を可能にする脱硫剤を提供する。
【解決手段】 上記課題を解決するための脱硫剤は、CaOを主成分とする粉状の石灰と、Al23 及びSiO2 を主に含有し且つ予め溶融した後に固化した固体粉状物質と、を含有することを特徴とする。この場合に、前記固体粉状物質と前記石灰との配合質量比(固体粉体物質の配合量(質量%)/石灰の配合量(質量%))を0.05以上1.0以下とする、前記固体粉状物質の平均粒子径を15μm以下とする、前記脱硫剤の塩基度(質量%CaO/質量%SiO2)を3.5以上とすることで、より一層脱硫効率が向上する。 (もっと読む)


【課題】本発明は、転炉での精錬時間の延長を招くことなく、安価に、且つ安定してCr濃度が3質量%以下の低Cr合金鋼を溶製可能な低Cr合金鋼を溶製方法を提供することを目的としている。
【解決手段】転炉及び二次精錬装置からなる精錬プロセスを用い、Cr濃度が3質量%以下の低Cr合金鋼を溶製する方法を改善した。新しく開発した方法は、まず、転炉での酸素吹錬の段階で、溶鋼の脱炭酸素効率が100%となるC濃度の最小値に到達するほぼ1分前に、サブランスで1回、溶鋼の成分及び温度を測定し、該酸素吹錬を終了する時の溶鋼の仮目標とするC濃度及び温度を予測してから、該溶鋼を出鋼し、その後、二次精錬装置としてVOD方式のものを採用して、該VODでの二次精錬により前記溶鋼の最終目標とするC濃度及び温度への調整を行うものである。 (もっと読む)


61 - 80 / 134