説明

Fターム[4K013FA05]の内容

溶融状態での鋼の処理 (7,585) | 制御、測定又は数値限定 (648) | 対象がスラグの成分組成であるもの (181)

Fターム[4K013FA05]の下位に属するFターム

Fターム[4K013FA05]に分類される特許

61 - 80 / 122


【課題】 Ti脱酸により冷延鋼板用素材の極低炭素鋼を製造するに当たり、表面性状及び内質に優れる冷延鋼板の素材となる含Ti極低炭素鋼の溶製方法を提供する。
【解決手段】 C含有量が0.02質量%以下で、Tiを0.02質量%以上、Caを0.0005質量%以上含有する含Ti極低炭素鋼の溶製するに際し、先ず溶鋼を真空脱炭処理し、次いでTi含有合金を添加して脱酸処理して[質量%Al]≦[質量%Ti]/10を満足する組成の脱酸溶鋼とし、その後、金属CaまたはCa含有合金を添加し、Caの添加後、更に、真空脱ガス設備にて攪拌処理を実施して、溶鋼中の全酸素濃度を0.007質量%以下に調製するとともに、溶鋼中の酸化物組成を、Ti酸化物が30質量%以上90質量%以下、CaOが10質量%以上50質量%以下、Al23 が50質量%以下、その他成分が不可避的酸化物となるように調製する。 (もっと読む)


【課題】 取鍋内のスラグ中の鉄酸化物及びマンガン酸化物の含有量を下げるとともに、改質したスラグの取鍋からタンディッシュへの流出を防止して高清浄度鋼を溶製する。
【解決手段】 転炉から出鋼された溶鋼を収容する取鍋内にスラグ還元剤を添加してスラグを改質し、その後、取鍋内に、スラグの融点を上昇させるMgO含有物質を添加し、改質されたスラグを固化させる。この場合に、前記スラグ改質剤を転炉からの出鋼直後に添加し、前記MgO含有物質をRH真空脱ガス装置で添加すること、及び、前記MgO含有物質をマグネシアクリンカーとすることが好ましい。 (もっと読む)


【課題】 比較的簡便に製造可能で、特にフッ素を含有しなくても高効率で溶融鉄の脱硫処理を可能にする、環境に悪影響のない脱硫剤の製造方法を提供する。
【解決手段】 発明の脱硫剤の製造方法は、CaOを主成分とする粉状の石灰と、Al23 及びSiO2 を主に含有し且つ予め溶融した後に固化した粉状の既溶融化物質と、を含有する脱硫剤の製造方法であって、前記粉状の石灰と前記粉状の既溶融化物質とを混合処理することを特徴とする。前記混合処理を、攪拌羽根を内蔵した高速攪拌混合機を用いて実施する、或いは、前記石灰と前記既溶融化物質とを同時に粉砕することにより行うことができる。 (もっと読む)


【課題】長期膨張性を有する、粉状の製鋼スラグの低膨張化をはかる安定化処理方法を提供する。
【解決手段】本発明によれば、T−Feを2.0質量%以上、かつMgOを4.0質量%以上含み、粒径分布として粒径1mm以下が30質量%以上である粉状製鋼スラグについて、該スラグの含有水分量を8質量%以上20質量%以下に調整し、炭酸ガスの純分量としてスラグ1トン当たりに100Nm/hr以下の炭酸ガス含有ガスを供給し、該炭酸ガス含有ガスの供給量をスラグ1トン当たり100Nm/hr以下とする粉状製鋼スラグの安定化処理方法が提供される。従って、本方法により得られたスラグは、体積膨張率が1.5容量%以下を達成し、粉状スラグの自然砂あるいは砕砂等の土木用資材の代替使用が可能となる。 (もっと読む)


【課題】高膨張性を有する粉状の製鋼スラグの低膨張化をはかる安定化処理方法を提供する。
【解決手段】粒径1mm以下を60質量%以上含み、体積膨張率が3%以上の粉状の製鋼スラグについて、その含有水分量を10質量%以上25質量%以下に調整し、炭酸ガス純分量でスラグ1トン当たり、5Nm3/Hr以上100Nm3/Hr以下の炭酸ガスを含有するガスを供給して、5時間以上保持する。これにより、体積膨張率が1.5%以下を達成し、粉状スラグの自然砂あるいは砕砂等の土木用資材の代替使用を可能にする。 (もっと読む)


【課題】稲作と畑作との両方に有効な成分をもつ珪酸質肥料とそのための原料スラグとを提供すること。
【解決手段】CaO:30〜50mass%、SiO:20〜40mass%、MgO:8〜30mass%、Al:1.0〜15.0mass%を含み、CaO/SiOの比率が0.8以上1.4未満に調整され、メルビナイト(3CaO・MgO・2SiO)を30vol%以上、マグネシア(MgO)を3〜40vol%、スピネル(MgO・Al)を3〜40vol%含む鉱物相を有するステンレス鋼、Fe−Ni合金鋼およびNi基合金から選ばれるいずれか1種以上の鋼・合金の精錬工程で発生した精錬滓からなるアルカリ分が56.3mass%以上の肥料用スラグ。 (もっと読む)


【課題】溶鋼中に浸漬させたランスを通して、Mgを高濃度で安定的に、かつ高い歩留まりのもとに添加することのできる方法を提供する。
【解決手段】溶鋼に浸漬させた浸漬ランスを通して、Mgを含有するワイヤーまたはロッドをキャリアガスとともに該溶鋼中に供給する方法において、Mgの添加速度を下記(1)式により定められる範囲とし、かつ、Mgの添加速度とキャリアガスの流量との比を下記(2)式に定められる範囲とすることを特徴とする溶鋼へのMgの添加方法。
2.0≦V≦70 ・・・・(1) 0.40≦R≦7.0 ・・・(2) ここで、Vは溶鋼1トン(t)当たりのMgの添加速度(g/t/min)を、また、RはMgの添加速度V(g/t/min)とキャリアガスの流量Q(Nl/min)との比(g/t/Nl)を表す。前記の方法は、タンディッシュ内の溶鋼に適用することが好ましい。 (もっと読む)


【課題】 真空脱ガス設備で溶鋼を脱硫処理するに当たり、取鍋内スラグの組成、溶鋼成分及び真空脱ガス設備における精錬の順序を最適化し、従来に比べて格段に効率良く脱硫処理する方法を提供する。
【解決手段】 大気圧下で脱炭精錬を行う脱炭精錬炉から取鍋への出鋼中に珪素含有合金鉄を投入して取鍋内の溶鋼3の珪素濃度を0.10質量%以上に調整し、出鋼後の前記取鍋内のスラグ4に対してアルミニウムを含有するスラグ改質剤を添加して、前記スラグのトータル.Fe及び酸化マンガンの合計濃度を5質量%以下に調整し、その後、前記取鍋を真空脱ガス設備1に搬送し、真空脱ガス設備で精錬されている減圧下の前記溶鋼の表面に向けて、上吹きランス13を介して脱硫剤を搬送用ガスとともに吹き付けて添加し、前記溶鋼を脱硫処理する。 (もっと読む)


【課題】介在物の全体を低融点化して変形し易くすることで、疲労特性に優れたばねを得るためのSiキルド鋼線材、およびこの鋼線材から得られる疲労特性に優れたばねを提供する。
【解決手段】本発明のSiキルド鋼線材は、Sr:0.03〜20ppm(「質量ppm」の意味、以下同じ)、Al:1〜30ppmおよびSi:0.2〜4%(「質量%」の意味、以下同じ)を夫々含有する他、Mgおよび/またはCaを合計で0.5〜30ppmの範囲で含むものであり、こうした鋼線材からばねを成形することによって、疲労特性に優れたばねが得られる。 (もっと読む)


【課題】介在物の全体を低融点化して変形し易くすることで、疲労特性に優れたばねを得るためのSiキルド鋼線材、およびこの鋼線材から得られる疲労特性に優れたばねを提供する。
【解決手段】本発明のSiキルド鋼線材は、Ba:0.03〜30ppm(「質量ppm」の意味、以下同じ)、Al:1〜30ppmおよびSi:0.2〜4%(「質量%」の意味、以下同じ)を夫々含有する他、Mgおよび/またはCaを合計で0.5〜30ppmの範囲で含むものであり、こうした鋼線材からばねを成形することによって、疲労特性に優れたばねが得られる。 (もっと読む)


【課題】ステンレス電気炉スラグ中に含有されたクロムを低濃度まで効率的に還元及び回収することができる、含酸化クロムスラグからのクロム金属還元方法を提供する。
【解決手段】ステンレス製鋼工程中、電気炉スラグに含有されたクロムを還元させる工程において、スラグを液状に維持しつつ、粉体アルミニウムドロスの投入量を、溶鋼1トンあたり10kg〜20kgの範囲、または
【数4】


式を満すように、電気炉スラグ中に吹き込む。 (もっと読む)


【課題】介在物を低融点化して変形し易くすることで、疲労特性に優れたばねを得るためのSiキルド鋼線材、およびこうした鋼線材から得られる疲労特性に優れたばねを提供する。
【解決手段】本発明のSiキルド鋼線材は、線材中に存在する酸化物系介在物が、SiO2:30〜90%、Al23:2〜50%、MgO:35%以下(0%を含まない)、CaO:50%以下(0%を含まない),MnO:20以下(0%を含まない)およびBaO:0.2〜20%を夫々含み、且つ(CaO+MgO)の合計含有量が3%以上である。 (もっと読む)


【課題】 酸化物系非金属介在物が従来よりも少なく、耐転動疲労性に優れた軸受鋼の溶製方法を提供する。
【解決手段】 転炉での脱炭精錬により得た溶鋼の転炉から取鍋への出鋼中に金属Alを添加して取鍋内の溶鋼を脱酸し、出鋼後、取鍋内の溶鋼上に存在する転炉スラグを排出し、転炉スラグの排出後に取鍋内にフラックスを添加して塩基度(CaO/SiO2 )が質量比で1.5〜3.0の取鍋スラグを取鍋内に生成させ、次いで、希ガスを溶鋼中に吹き込んで前記取鍋スラグと溶鋼とを攪拌し、その後、RH真空脱ガス装置で溶鋼の真空脱ガス精錬を実施し、軸受鋼を溶製する。 (もっと読む)


【課題】疲労特性に優れた鋼線材を製造する製造方法を提供する。
【解決手段】前記鋼線材の元となる溶鋼4の精錬処理を行うにあたり、該精錬処理は取鍋ガス攪拌精錬、減圧槽内取鍋ガス攪拌精錬、取鍋内電磁誘導攪拌精錬、還流式脱ガス精錬のいずれか1つ又は2つ以上を組み合わせたものとし、該精錬処理で使用するスラグ13の組成を、CaO/SiO2=0.5〜1.5,Al2O3=3〜25質量%,MgO=3〜25質量%とし、さらに、前記各攪拌精錬における「攪拌動力密度×精錬時間」の総和が800〜1500の範囲内になるようにする。 (もっと読む)


【課題】スラグ組成、溶鋼の昇熱処理、攪拌処理および取鍋蓋開口部の不活性ガスパージの適正化により、極低硫低窒素高清浄鋼を効率よく安定して溶製できる方法を提供する。
【解決手段】溶鋼を下記の工程1〜3の順序により処理する極低硫高清浄鋼の溶製方法である。工程1:大気圧下において取鍋内溶鋼にCaO系フラックスを添加する、工程2:取鍋蓋を設置し、取鍋内溶鋼中に攪拌ガスを吹き込んで蓋の内側への大気の侵入を抑制しながら攪拌するとともに、溶鋼に酸化性ガスを供給し、生成した酸化物をCaO系フラックスと混合してカバースラグを形成する、工程3:酸化性ガスの供給を停止し、取鍋内溶鋼中に攪拌ガスを吹き込んで脱硫および介在物除去を行う。さらに、蓋の開口部を不活性ガスによりパージするか、工程3の後に工程4として溶鋼のRH真空脱ガス処理に際し、溶鋼中の介在物の低減および脱窒処理などを行ってもよい。 (もっと読む)


【課題】非金属介在物の低減を十分に行う。
【解決手段】 RH装置における精錬処理において、スラグの塩基度、スラグに含まれるFeOやMnO、溶鋼を還流する強弱及びその還流時間、溶鋼還流量を最適化して精錬を行う。 (もっと読む)


【課題】前処理および設備の変更を伴わずに簡便に実施することができ、溶鋼中の硫黄および水素の含有量が少ない取鍋精錬方法を提供する。
【解決手段】取鍋3に受けた前記溶鋼を昇温する前または昇温途中に、MgO≧95%、CaO=0%である第1のフラックスを溶鋼1トンあたり5〜8kg添加し、第1のフラックスの添加後に、生石灰および/またはフッ化カルシウム(CaF2)を有する第2のフラックスを添加し、第1のフラックスおよび第2のフラックスの添加の結果として、精錬後のスラグが下記成分となるように溶鋼の2次処理を行う。
CaO :20〜40mass%
SiO2 :20〜30mass%
CaF2 :10〜20mass%
MgO :20〜25mass%
T.Fe+MnO+Cr23 ≦2.0mass%
(CaO+MgO)/SiO2 :1.5〜3.0 (もっと読む)


【課題】Bを添加した低炭快削鋼の製造において、連続鋳造用スライディングノズルプレートの溶損を防止する製造方法を提供する。
【解決手段】質量%で、C:0.005〜0.2%、Si:0.5%以下、Mn:0.3〜3.0%、P:0.2%以下、S:0.03〜1.0%、B:0.001〜0.015%、O:0.005〜0.035%、N:0.003〜0.015%、Al:0.01%以下、Zr:0.004〜0.04%を含有し、残部がFeおよび不可避不純物からなる鋼を、ZrO2系スライディングノズルプレートを用いて連続鋳造により製造するに際し、連続鋳造に供する溶鋼中酸化物中の平均ZrO2濃度を質量%で10〜70%とすることを特徴とするB含有低炭非鉛快削鋼の製造方法。 (もっと読む)


【課題】本発明の目的は、金属アルミニウム粉末のような粉塵爆発の危険性がなく、製造上並びに使用上安全であり、溶銑、溶鋼、アルミニウム、ニッケルのような溶融金属の温度を上昇させるのに充分な発熱量があり、且つ発熱反応時に白煙等を多量に発生せず、作業性が良好な発熱材を提供することにある。
【解決手段】本発明の発熱材は、金属または合金を10〜35質量%、酸化マンガンを5〜85質量%、及び酸化鉄を0〜80質量%(但し、酸化マンガンと酸化鉄の合計量は50〜90質量%)含有してなるか、更に、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩及び金属硝酸塩よりなる群から選択される1種または2種以上の発熱開始促進材を0〜20質量%含有してなることを特徴とする。 (もっと読む)


【課題】脱炭工程において、スロッピングの発生が防止されながら、高濃度のMnを含有する溶鋼中の炭素が安全に除去される、高Mn鋼の製造方法を提供する。
【解決手段】高Mn鋼の製造方法は、原材料を溶解し、第1の溶鋼を得る溶解工程S10と、前記第1の溶鋼に造滓剤を添加するとともに酸素ガス及び不活性ガスを吹き込んで前記第1の溶鋼中の炭素を除去し、第2の溶鋼を得る脱炭工程S20と、前記第2の溶鋼の成分を調整し、第3の溶鋼を得る成分調整工程S30と、前記第3の溶鋼を鋳込み、10質量%以上20質量%以下のMn及び0.15質量%以下のCを含有する鋳塊を得る鋳込み工程S40とを備える。前記第1の溶鋼は、0.20質量%以下のSiと0.30質量%以下のCとを含有する。 (もっと読む)


61 - 80 / 122