説明

Fターム[4K013FA05]の内容

溶融状態での鋼の処理 (7,585) | 制御、測定又は数値限定 (648) | 対象がスラグの成分組成であるもの (181)

Fターム[4K013FA05]の下位に属するFターム

Fターム[4K013FA05]に分類される特許

41 - 60 / 122


【課題】連続鋳造時のノズル詰まりを防止でき、且つ表面性状および内質に優れた冷延鋼板を得ることができる含Ti極低炭素鋼を溶製する。
【解決手段】真空脱ガス設備において、溶鋼を脱炭処理した後、Ti含有合金を添加して脱酸処理することで[%Al]≦[%Ti]/10を満足する組成の脱酸溶鋼とし、次いで、溶鋼にCaを含有する介在物組成調整用合金を添加して溶鋼中の介在物組成をTi酸化物:90%以下、CaO:5〜50%、Al:70%以下に調整し、前記脱酸処理した後の取鍋スラグ中のT.Fe濃度+MnO濃度を10mass%以下、(%CaO)/(%SiO)を1以上、TiO濃度を1mass%以上、Al濃度を10〜50mass%とする。溶鋼中の介在物組成が最適化され且つ介在物量が低減されることで、介在物によるノズル詰まりを防止でき、且つ表面性状及び内質に優れた冷延鋼板を得ることができる含Ti極低炭素鋼を溶製できる。 (もっと読む)


【課題】 転炉とRH真空脱ガス装置とを用いてAlレス極低炭素鋼を溶製するに当たり、RH真空脱ガス装置の浸漬管のスラグによる溶損を防止する。
【解決手段】 転炉で精錬した溶鋼3をRH真空脱ガス装置1にて脱炭処理してAl含有量が0.001質量%以下であるAlレス極低炭素鋼を溶製するに当たり、溶鋼の転炉出鋼時または出鋼後に溶鋼を収容する取鍋内にCaO源とMgO源とを添加して、取鍋内溶鋼上に存在するスラグ4のCaO含有量を50〜70質量%、MgO含有量を10〜30質量%に調整し、その後、RH真空脱ガス装置にて精錬する。 (もっと読む)


スラグ中の(Cr)含有量と適正な組成及び液相分率を制御して真空脱炭精錬効率を極大化し、従来の技術に対して短時間内に溶鋼中の炭素濃度を極低水準として含むフェライト系ステンレス鋼を製造する。本方法は、AOD精錬炉にて粗脱炭及び脱窒後、未脱酸状態で溶鋼を取鍋に出鋼した後、取鍋の溶鋼上部の未脱酸スラグを除去し;取鍋を大型真空槽に安着して減圧した後、溶鋼上部からランスを介して酸素ガスを吹き込んで脱炭反応を行い;酸素吹錬の開始時点でAlを投入してAlを生成させ;酸素吹錬の終了時点で生石灰を投入してCaO−Al−Cr−MgO系スラグを形成させ、酸素吹錬の終了後、流動性が良好なスラグと溶鋼との反応を通じてスラグ中の[Cr]と溶鋼中の[C]との反応により真空微細脱炭が促進され;真空微細脱炭効率を極大化するため取鍋底の多孔性プラグを介してArのような不活性ガスを供給する。
(もっと読む)


【課題】ステンレス精錬の脱炭にてスラグ移行したCr酸化物を溶鋼中に回収する。
【解決手段】酸素吹精して炭素を0.03%以下とし、スラグ移行したCr酸化物をSi合金鉄で還元して溶鋼中に回収する操作において、Si合金鉄は、総吹精量の関数として予め算出した投入量を添加し、その算出方法は、本操業の前に、総吹精量が異なる予備操業を複数回行い、一の予備操業で任意量のSi合金鉄で精錬し、所定含有率を超えるCr酸化物がスラグに残存した場合は、更に必要なSi合金鉄と既に投入したSi合金鉄を合算して本来の投入量を求め、他の予備操業で任意量のSi合金鉄で精錬し、Si合金鉄投入量が過剰であって溶融合金のSi濃度が所定濃度を超えた場合は、添加したSi合金鉄と溶鋼の過剰Si濃度の差から溶鋼のSi濃度を所定濃度以下にするための本来の投入量を求め、各予備操業で吹精量とSi合金鉄投入量の関数を回帰式として得る。 (もっと読む)


【課題】スラグに含有される制限成分が許容値を超える高濃度スラグと、許容値以下である低濃度スラグとに、スラグを正確に分別することができるスラグ分別方法を提供する。
【解決手段】制限成分をスラグ中に投入して処理した後、同一の制限成分を投入しない次のチャージについてスラグを採取し、その採取したスラグの少なくとも95%以上が球換算直径で50μm以下となるようにスラグを粉砕し、圧力30t/cm以上で且つ20秒以上プレスすることにより、厚さが2〜4mmで分析面の凹凸が0.05mm以下の試料を成形し、上記分析面に対し、電圧30kV〜40kV、電流50〜70mAのX線を照射して制限成分含有量を分析し、分析によって得られた制限成分含有量Iと予め設定された制限成分許容値Pとを比較し、I>Pの場合は制限成分高濃度含有スラグとして、また、P≧Iの場合は制限成分低濃度含有スラグとして分別することを特徴とする。 (もっと読む)


【課題】 AlレスTi−REM脱酸した極低炭素鋼の連続鋳造において,連続鋳造の取鍋交換部近傍でも安定的にノズル閉塞を防止するための方法を提供する。
【解決手段】 溶鋼のAl濃度が0.015質量%以下のTi−REM脱酸した極低炭素鋼を鋳造するに当たり,取鍋中のスラグ成分を以下の値にして鋳造することを特徴とする連続鋳造方法。このため、出鋼後のスラグに金属Al,金属Tiもしくはその合金を改質剤として取鍋流出スラグ1ton当たり金属Alもしくは金属Ti換算で50〜200kgを添加し,さらに出鋼中もしくは出鋼後のスラグにCaOやCaOを含むフラックスを取鍋流出スラグ1ton当たりCaO換算で200〜500kg添加すると好ましい。
FeO+MnO≦14質量%
Al23≦40質量% (もっと読む)


【課題】低コストで効率良く高度な脱硫および還元精錬を行うことができ、土木・建設用資材として安全なスラグを生成することができるステンレス鋼の精錬方法を提供する。
【解決手段】AOD法またはVOD法により、溶鋼とその浴面上に浮遊するスラグを形成し、溶鋼内に吹き込んだアルゴンガスによる攪拌にて溶鋼とスラグを反応させて溶鋼を精錬するステンレス鋼の精錬方法において、CaF2を主成分とする造滓剤を用いることなしに、脱炭精錬後の溶鋼に生石灰、フェロシリコン、および金属Alの3種を同時に添加し、スラグと溶鋼との間のS分配比を300以上に制御する。 (もっと読む)


【課題】 低炭素合金鋼のLF精錬において、環境問題からフッ素を含有するホタル石を使用することなく、スラグの流動性を図って二次精錬を円滑に進める。
【解決手段】 LF精錬の初期造滓材のCaO・Al23・SiO2の三元系酸化物の比率を制御してスラグを低融化し、ホタル石を使用することなく、スラグの流動性を確保して、LF精錬を行う方法で、スラグ成分であるCaO・Al23・SiO2の3元系状態図から、質量%で、CaO:45〜60%、Al23:45〜60%、SiO2:0〜10%の間のスラグが低融物となる範囲を狙いとし、LF精錬の造滓初期に500〜1600℃の150tの溶鋼中にCaO:300kg+300kg、Al滓:600kg、2CaO・Al23:300kgを投入し、スラグを低融化して流動性を確保し、鋼中のS量を0.010%とする。 (もっと読む)


【課題】製鋼スラグや高炉徐冷スラグからのフッ素溶出を効果的に抑制することができ、且つ特別な設備や処理剤などを用いることなく低コストに実施可能なスラグ処理方法を提供する。
【解決手段】製鋼スラグ、高炉徐冷スラグの中から選ばれる1種以上のスラグであって、フッ素含有量が0.15mass%以上の鉄鋼スラグ(A)に対して、カルシウムとリンを含有する鉱物相を有し且つフッ素含有量が0.15mass%未満の鉄鋼スラグ(B)を添加し、鉄鋼スラグ(A)の含有成分と鉄鋼スラグ(B)の含有成分によりフッ素を含む難溶性化合物を生成させ、フッ素をスラグに固定する。 (もっと読む)


【課題】過酷な使用環境下においても、転動疲労による破損に対して良好な耐久性を有し、優れた転動疲労寿命を確保できる高周波焼入れ用鋼材の提供。
【解決手段】C:0.35〜0.7%、Si:0.1〜0.8%、Mn:0.1〜1.5%、P≦0.03%、S≦0.010%、Cr:0.01%以上0.50%未満、Al≦0.005%、Ca≦0.0005%、O≦0.0020%、N≦0.02%を含有し、残部はFeと不純物の化学成分からなり、非金属介在物について、酸化物の平均組成が質量%で、CaO:10〜60%、Al2O3≦20%、MnO≦50%及びMgO≦15%で残部SiO2及び不純物からなるとともに、鋼材の長手方向縦断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下である高周波焼入れ用鋼材。(a)V≦0.3%及びNb≦0.1%の1種以上、又は(b)B≦0.005%及びTi≦0.05%、を含有してもよい。 (もっと読む)


【課題】過酷な使用環境下においても、転動疲労による破損に対して良好な耐久性を有し、優れた転動疲労寿命を確保できる軸受鋼鋼材の提供。
【解決手段】C:0.6〜1.2%、Si:0.1〜0.8%、Mn:0.1〜1.5%、P:0.03%以下、S:0.010%以下、Cr:0.5〜2.0%、Al:0.005%以下、Ca:0.0005%以下、O:0.0020%以下を含有し、残部はFe及び不純物の化学成分からなり、非金属介在物について、酸化物の平均組成が質量%で、CaO:10〜60%、Al23:20%以下、MnO:50%以下及びMgO:15%以下で残部SiO2及び不純物からなるとともに、鋼材の長手方向縦断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下である軸受鋼鋼材。 (もっと読む)


【課題】還元期の溶融スラグの冷却を、環境に悪影響を与えることなく、経済的かつ安全に実施可能な製鋼還元期スラグの粉塵発生防止方法を提供する。
【解決手段】製鋼工程で発生する還元期の溶融したスラグを放冷して凝固させた後、凝固したスラグ10の上部に、スラグ1m当たり0.4m/時間以上1.5m/時間以下、かつスラグ1トン当たり0.2m以上1.4m以下の冷却水を霧状に散水して、スラグ10の崩壊による粉塵の発生を防止しながらスラグ10を冷却する。 (もっと読む)


【課題】耐孔食性と熱間加工性に優れる二相ステンレス鋼とその製造方法を提案する。
【解決手段】質量mass%で、C:0.030%以下、Ni:3〜10%、Cr:20〜28%、Mo:2〜5%、N:0.05〜0.40%、Al:0.001〜0.05%、Mg:0.0001〜0.0050%、Ca:0.0005%以下の成分組成を有し、鋼中に含まれる非金属介在物が、MgO・Al、Al、MgO、MnO−Al系酸化物、CaO濃度が40%以下のCaO−Al系酸化物のうちの1種または2種以上からなり、全非金属介在物に対するCaO−Al系酸化物の個数比率が40%以下、全非金属介在物におけるCaO濃度が10mass%以下であり、60℃、20%NaCl水溶液中における孔食電位Vc’10が600mV(vsSCE)以上である二相ステンレス鋼。 (もっと読む)


【課題】硫黄含有量が増加した使用済スラグを、脱硫能力の良好な脱硫用スラグとして再び使用して、品質が良好な製鋼を行なうことができる使用済スラグの硫黄除去方法を提供しようとする。
【解決手段】製鋼プロセスにおいて、脱硫処理に使用されて硫黄含有量が増加している使用済スラグ4を、熱処理炉Bの中に存置させ、上記炉内を二酸化炭素ガス雰囲気にすると共に、900℃以上の温度にして1時間以上加熱して、上記使用済スラグから硫黄成分以外の他の成分を変動させることなく、硫黄成分を除去し、上記使用済スラグ4の脱硫能力を増加させ、再利用可能にするようにしたものである。 (もっと読む)


【課題】非金属介在物の低減を十分行って、清浄度の高い鋼を製造する高清浄度鋼の製造方法を提供する。
【解決手段】転炉から出鋼した溶鋼に対して取鍋精錬を行った後、還流式真空脱ガス装置で真空脱ガス精錬することで高清浄度鋼を製造する高清浄度鋼の製造方法において、取鍋精錬後のAlの成分値が0.030%〜0.070%となるように精錬すると共に、取鍋精錬後のスラグの組成であるFeO、MnO、CaO、SiO2、MgO、Al23、TiO2を最適化する。また、真空脱ガス精錬の際に、攪拌時間及び溶鋼還流量を最適化する。 (もっと読む)


【課題】高Si鋼において、疲労特性に優れたばねの製造に有用な高清浄度ばね用鋼を提供する。
【解決手段】C:1.2%(質量%の意味、以下同じ)以下(0%を含まない)、Si:1.8〜4%、Mn:0.1〜2.0%、total Al:0.01%以下(0%を含まない)を含み、残部鉄および不可避不純物からなり、上記Si量と鋼中の固溶(SIMS)Ca量が、下記式(1)の関係を満たすことを特徴とする疲労特性に優れた高清浄度ばね用鋼。
Si×10−7 ≦ 固溶(SIMS)Ca ≦Si×5×10−7 …(1)
[式中、固溶(SIMS)Ca、Siは、鋼中におけるそれぞれの含有量(質量%)を示す] (もっと読む)


【課題】真空脱ガス工程における復硫現象を抑制する技術を提供する。
【解決手段】(a)取鍋精錬〜真空脱ガスの溶鋼温度[℃]を1560〜1660とし、(b)取鍋精錬終了〜真空脱ガス開始の時間[min]を60以下とする。(c)攪拌動力[Watt/ton]を15〜110とし、(d)環流流量[ton/min]を130〜195とする。(e)Al投入量[kg/ton]を0.5〜2.0とし、(f)酸素吹付量[Nm3/ton]を0.4〜2.0とする。(g)取鍋精錬工程終了〜真空脱ガス工程終了のスラグ厚み[mm]を200〜400とし、下記式を満足する。(h)取鍋精錬工程におけるスラグ組成を所定の組成とし、スラグ融点を取鍋内溶鋼の温度以下とする。
TL≧11667 L2-9117 L+3030
TL[℃]:前記スラグの液相線温度、L[m]:前記スラグの厚み (もっと読む)


【課題】本発明は、1300℃における粘度が0.8Pa・s以上の高粘度パウダーとして鋼中への難巻き込み性を確保しながら、かつ潤滑性も優れており、パウダー性欠陥の無い高品位の製品を得ることができ、生産性を阻害することのない鋼の連続鋳造用パウダーを提供することを目的とする。
【解決手段】Al、Tiの少なくとも一方を含有する鋼を連続鋳造するための連続鋳造用モールドパウダーであって、CaO/SiO2が質量比で0.9〜1.2、CaOが38質量%以下、SiO2が10質量%以上35質量%以下、Al23が7質量%以上で25質量%以下、Na2Oが3質量%以上で10質量%以下で、かつ、MgOを実質的に含まず、1300℃における粘度が0.8Pa・s以上であることを特徴とする鋼の連続鋳造用モールドパウダー。 (もっと読む)


【課題】製鋼二次精錬工程における溶鋼の脱硫方法に関し、Al23介在物による脱硫能低下を抑制することで二次精錬工程での高い脱硫率を実現し、脱硫剤使用量を少なくしても低硫域まで脱硫でき、さらに耐火物溶損も軽減する方法を提供する。
【解決手段】脱炭精錬後に転炉から取鍋へ溶鋼を出鋼する際にフェロシリコンをSi換算で溶鋼1t当たり2kg以上投入し、続く二次精錬工程の真空脱ガス設備において、Alを溶鋼1t当たり0.2kg以上投入し、溶鋼を3分以上10分以下循環した後に脱硫剤をArとともに吹き込むことを特徴とする溶鋼の脱硫方法である。CaO、CaF2、MgOおよび不可避的不純物から構成され、その組成が1.0≦CaO/CaF2≦3.0を満たし、かつMgOが10質量%以上40質量%以下である脱硫剤を使用すると好ましい。 (もっと読む)


【課題】 EF−LF−RH工程で高Ni−Fe合金鋼の極低のS、C及びSi化を図り、2次精錬でAl23非金属介在物を生成することなく、非金属介在物を低融点可塑性のスペーサタイトのMnO・Al23・SiO2に形態制御する。
【解決手段】 EFでスクラップ、合金を溶解し、LFで高塩基度スラグを用い、不純物以外の金属Alを使用せず、LFからRH終了までに精錬、脱硫、高塩基度スラグ除去し、低塩基度とAl23含有フラックスを投入してスラグ置換し、脱酸時にSi添加してLF終了し、RHで酸素吹精して脱炭、脱Siし、脱炭中は鋼中Siを残存させ、脱炭終了後に高CのMnおよびSiを投入して脱酸し、攪拌時間を置いて溶鋼の脱酸とAl23の還元を促進し、非金属介在物をスペーサタイトのMnO・Al23・SiO2に形態制御し、Si≦0.03%、C≦0.006%、S≦30ppm、O2≦60ppmの高Ni−Fe合金鋼を得る。 (もっと読む)


41 - 60 / 122