説明

Fターム[4K014AB03]の内容

銑鉄の精製;鋳鉄の製造;転炉法以外の製鋼 (4,082) | 処理、添加剤 (1,043) | 化合物 (812) | 酸化物 (583) | 生石灰(CaO) (320)

Fターム[4K014AB03]に分類される特許

81 - 100 / 320


【課題】 溶銑を貯蔵する貯銑炉の炉体耐火物の寿命向上を目的として炉内スラグの組成を調整するにあたり、出湯口耐火物のスラグによる溶損を効率的に抑制することのできるスラグの組成調整方法を提案するとともに、当該スラグの組成調整方法を実施するうえで最適な貯銑炉を提案する。
【解決手段】 本発明に係る貯銑炉内スラグの組成調整方法は、貯銑炉内のスラグに耐火物の溶出を防止するためのスラグ組成調整剤を投入して、前記スラグの組成を調整するにあたり、前記スラグ組成調整剤を貯銑炉1の出湯口2の近傍のスラグに局所的に投入することを特徴とし、また、本発明に係る貯銑炉は、溶銑とは接触しない天井側であって、貯銑炉1の出湯口2の上方に相当する位置に、耐火物の溶出を防止するスラグ組成調整剤を投入するための調整剤投入用開口部9が設けられていることを特徴とする。 (もっと読む)


【課題】攪拌動力密度と固体酸素比率とを掛け合わせたパラメータZと、脱珪外酸素量との関係、生石灰の粒径、L/L0、溶銑温度を適正範囲にすることにより、脱りん効率を向上させることができるようにする。
【解決手段】溶銑の脱りん処理を行うに際し、処理中の底吹き攪拌動力密度をX[kw/t]と固体酸素比率Y[%]との積をパラメータZと定義し、脱珪外酸素量GO2とZとの関係を0.00065×Z2−0.12×Z+12.5≦GO2とし、生石灰の粒径を5〜40mmとし、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20にすると共に、脱りん処理後の溶銑温度を1280〜1340℃として脱りん処理を行う。 (もっと読む)


【課題】脱硫処理中に投射歩留りをオンラインで推定し、その結果に基づいて石灰系脱硫剤の投射条件を最適化するための処置を施すことを可能とする技術を提供する。
【解決手段】容器2内に保持した溶銑3に石灰系脱硫剤を上置きして、溶銑中に浸漬したインペラ4によって溶銑と石灰系脱硫剤を攪拌する一方、容器の上方から先端を溶銑浴面上に離隔して配置した上吹きランス5を介して石灰系脱硫剤7を投射して溶銑の脱硫処理を行なう溶銑脱硫処理方法において、脱硫処理中に溶銑の浴面から発生するダストを排ガスとともに集塵設備12に導くダクト15の途中で排ガスの温度を測定し、投射された石灰系脱硫剤の投射歩留りを排ガスの温度と溶銑の温度に基づいて連続的に推定し、投射歩留りを向上させるように脱硫処理の条件を調整する。 (もっと読む)


【課題】 蛍石などのフッ素源を使用しなくともCaO系媒溶剤を迅速に滓化させることができ、溶銑を効率的に且つ安価に脱燐することのできる脱燐処理方法を提供する。
【解決手段】 上吹きランス1の軸心部に配置した中心孔4から不活性ガスを搬送用ガスとして脱燐用媒溶剤を溶銑に向けて噴出すると同時に、前記中心孔の周囲に設けた燃料供給ノズル6及び酸素含有ガス供給ノズル7により、前記中心孔からの噴出流の周囲に酸素含有ガスと燃料との反応による火炎の包囲帯を形成させ、且つ、前記中心孔の周囲に設置された3孔以上の周囲孔5から酸素含有ガスを溶銑の浴面に向けて吹き付ける。 (もっと読む)


【課題】脱珪効率を向上させると共に、バラツキ無く安定的に脱珪を行うことができるようにする。
【解決手段】高炉鋳床の溶銑流路内を流れる溶銑に脱珪剤を上方から添加し、インペラ10を溶銑に浸漬して回転させることにより溶銑と脱珪剤とを混合して溶銑中の珪素を連続的に除去するに際し、脱珪剤の粒度を1mm以下とし、脱珪剤の塩基度(CaO/SiO2)を1.2〜3.7とすると共にT.Feを30〜65質量%とし、スラグの最大厚みを150mm〜600mmとし、攪拌動力密度を式(1)を満たし且つ25〜250W/tを満たすようにし、溶銑流速を0.8〜2.0m/minとする。 (もっと読む)


【課題】上底吹転炉を用いて、脱燐剤に実質的にフッ素を含む副原料を使わずに、上吹き酸素流量が2.0〜4.0Nm3/min/tの条件で溶銑から燐を除去する方法において、その脱燐処理を高能率かつ高効率で行う方法を提供する。
【解決手段】底吹き流量を0.15〜1.5Nm3/min/tとして該脱燐処理後のスラグ中T.Fe質量濃度が3〜15質量%となるように調整し、前記脱燐処理中に該溶銑に含有される炭素濃度を2.8〜3.2質量%に一旦低下させ、その後、該溶銑に炭素源を供給して前記脱燐処理後に該溶銑に含有される炭素濃度を3.4〜3.8質量%に調整する。 (もっと読む)


【課題】 攪拌羽根を備えた機械攪拌式脱硫装置を用い、攪拌羽根によって攪拌されている溶銑浴面に上吹きランスを介して脱硫剤を吹き付け添加して溶銑を脱硫するにあたり、高い添加歩留まりで脱硫剤を添加することができると同時に、添加した脱硫剤の凝集を防止することができ、これにより、安定して高効率で脱硫する。
【解決手段】 上記課題を解決するための本発明に係る溶銑の脱硫方法は、機械攪拌式脱硫装置を用いた溶銑3の脱硫方法において、攪拌羽根4によって攪拌されている溶銑の浴面上に、粒径が30〜400μmの石灰系脱硫剤7を、上吹きランス5を介して搬送用ガスとともに上吹き添加して脱硫処理を行う。 (もっと読む)


【課題】 機械攪拌式脱硫装置で攪拌されている溶銑に、投入シュートからの上置き添加と上吹きランスからの上吹き添加とを併用して石灰系脱硫剤を供給して溶銑を脱硫処理するにあたり、高い添加歩留まりで脱硫剤を添加することができると同時に、添加した脱硫剤の凝集を防止することができ、これにより、安定して高効率で脱硫する。
【解決手段】 機械攪拌式脱硫装置を用いた溶銑の脱硫方法において、インペラー4によって攪拌されている溶銑3の浴面上に、先ず、石灰系脱硫剤6を上置き添加し、次いで、当該上置き添加の終了後、石灰系脱硫剤を、上吹きランス5を介して搬送用ガスとともに前記溶銑の浴面上に上吹き添加する。 (もっと読む)


【課題】同一の転炉で脱りん精錬と脱炭精錬を行うことによるメリットを享受しつつ、P規格の特に厳しい極低りん鋼についても安定的に溶製することのできる転炉精錬方法を提供する。
【解決手段】上底吹き転炉を用いて鋼を精錬するに際し、第1工程で溶銑を転炉に装入し、第2工程でフラックスを用いた転炉上底吹き精錬により溶銑脱りんを行い、第3工程で転炉を傾動して第2工程で生成したスラグの一部又は全部を排出し、第4工程でフラックスを追加して転炉上底吹き精錬により溶銑脱りんを行い、第5工程で転炉を傾動して第4工程で生成したスラグの一部又は全部を排出し、第6工程で転炉上底吹き精錬により脱炭を行う。最初の脱りん精錬とその後のスラグ除去の後、フラックスを追加して第2の脱りん精錬とスラグ除去を行い、さらにその後に脱炭精錬を行うので、脱炭精錬終了後の溶鋼中P濃度を十分に極低P鋼レベルまで低減できる。 (もっと読む)


【課題】極低りん鋼溶製のために、効率良く確実に溶銑りん濃度を低位にすることができるようにする。
【解決手段】脱炭工程に先だって上底吹き転炉型精錬容器にて気体酸素及び固体酸素源を供給して溶銑の脱りん処理を行うに際し、全酸素に対する前記固体酸素源の酸素比率を10〜60%とし、処理中に供給する酸素量であって脱珪反応に使用される酸素以外の酸素量を16Nm3/t〜22Nm3/tとし、投入する生石灰の粒径を5〜40mmとし、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20にすると共に、底吹き攪拌動力密度εを0.5〜3.5kw/tとし、脱りん処理後の溶銑温度を1280〜1340℃として脱りん処理を行う。 (もっと読む)


【課題】実操業に適用可能な手段によって、溶銑予備処理工程における脱P効率を改善することができる溶銑の脱Si脱P処理方法を提供する。
【解決手段】溶銑予備処理工程において溶銑の脱Si脱P処理を行うにあたり、処理初期の脱Si期におけるスラグ中の(質量%FeO):(質量%SiO)を90:10〜60:40の範囲に制御してスラグ液相率を高める。これにより副原料の溶解速度およびスラグ中の物質移動速度を高め、脱P効率を改善する。脱Si期におけるスラグ中の(質量%FeO):(質量%SiO)を90:10〜60:40の範囲に制御するには、脱Si期において供給した酸素が脱Siに寄与する割合ηを21%≦η≦62%の範囲となるように酸素供給速度を制御すればよい。 (もっと読む)


【課題】 CaOの滓化促進剤である、蛍石等のフッ素化合物を含有しないCaO系脱硫剤を使用して、CaO−CaF2系脱硫剤を用いた場合と同等の脱硫率で脱硫処理する。
【解決手段】 CaO粉体に対して、金属Alを10〜50質量%含有するアルミナ−金属Al混合体を脱硫処理対象の溶銑の脱硫処理前温度に応じて下記の(2)式、(3)式及び(4)式で求められるX質量%以上、X+15質量%以下の範囲で添加した脱硫剤を、攪拌羽根によって攪拌されている溶銑の浴面に添加し、溶銑を脱硫処理する。但し、(3)式において、Tは脱硫処理前の溶銑温度(℃)である。
溶銑温度:1250℃以下の場合 X(質量%)=20 …(2)
溶銑温度:1250℃超え1340℃未満の場合 X(質量%)=295-0.22×T …(3)
溶銑温度:1340℃以上の場合 X(質量%)=0.2 …(4) (もっと読む)


【課題】
CaFを使用せず、事前脱珪処理を省略した脱珪脱りん処理を短時間で安定して行う。
【解決手段】
溶銑の脱りんと転炉吹錬を行うプロセスにおいて、未脱珪溶銑を溶銑脱りん工程で固体酸素源として3000kg/m3以上の見かけ密度、3〜30mmの粒径を持つ固体酸素源を用いて脱りんを行う。また、脱りん工程において、脱炭滓脱炭滓、または粒径1mm以下のCaO源を用い、粒径1mm以下のCaO源は、珪素濃度0.05%以下に到達以降に添加する。 (もっと読む)


【課題】上底吹き転炉で、上吹き酸素流量を2.0〜5.0Nm3/min/溶銑t、底吹きガス流量を0.2〜0.6Nm3/min/溶銑t以下としてCaO含有粉体を上吹き酸素と共に溶銑へ上吹きして溶銑脱りんする方法において、スロッピングによる鉄歩留まり低下を抑制でき且つ高脱りん率が得られる方法を提供する。
【解決手段】CaO含有粉体中に含まれるCaOと上吹き酸素との質量比CaO/Oを式(A)の範囲とする。
0.036763×Qo2-0.26492×QB+0.366557
< CaO/O < 0.040893×Qo2-0.26492×QB+0.939606 (A)
ここで、
Qo2:上吹き酸素流量(Nm3/min/溶銑t)、
QB:底吹きガス流量(Nm3/min/溶銑t)、
CaO:CaO含有粉体上吹き期間中の、該粉体に含まれるCaOの平均質量供給速度(kg/min/溶銑t)、および
O:CaO含有粉体上吹き期間中の、上吹き酸素の平均質量供給速度(kg/min/溶銑t)
である。 (もっと読む)


【課題】 機械攪拌式脱硫装置で攪拌されている溶銑に上吹きランスから脱硫剤を上吹き添加して溶銑を脱硫処理する際に、脱硫剤の飛散を抑制して、反応性に優れる細粒の脱硫剤を効率良く溶銑中へ添加すると同時に、溶銑の酸素ポテンシャルを効率良く低下させて、溶銑を安定して効率的に脱硫する。
【解決手段】 機械攪拌式脱硫装置を用いた溶銑3の脱硫方法において、インペラー4によって攪拌されている溶銑の浴面上に、多重管構造である上吹きランス5の先端部から搬送用ガスとともに脱硫剤6を上吹き添加するとともに、脱硫剤を上吹きする部位の外周に設けた前記上吹きランス先端部の部位から、還元性ガス、不活性ガス、非酸化性ガスの内の何れか1種または2種以上のガスを溶銑浴面に向けて同時に吹き付けて脱硫処理を行うことを特徴とする。 (もっと読む)


【課題】 溶銑または溶鋼を酸化精錬するにあたり、効率的な酸化精錬が可能であると同時に転炉型精錬容器の付着地金を効率的に溶解するための上吹きランスを提供する。
【解決手段】 本発明の精錬用上吹きランス1は、上吹きランスの先端部に、鉛直下向きまたは斜め下向き方向の主孔ノズル11及び副孔ノズル12を有し、前記先端部から上方に隔離した位置の上吹きランスの側面部に、水平または斜め下向き方向の二次燃焼用ノズル13を有し、且つ、上吹きランスの内部には、固体酸素源とは異なる粉体を吹錬用の酸素含有ガスとともに前記主孔ノズルを通じて供給するか、または、吹錬用の酸素含有ガスを、前記主孔ノズルを通じて供給するための第1の供給経路と、二次燃焼用の酸素含有ガスを、前記二次燃焼用ノズルを通じて供給するための第2の供給経路と、粉体状の固体酸素源を、搬送用ガスとともに前記副孔ノズルを通じて供給するための第3の供給経路と、を有する。 (もっと読む)


【課題】Mg源を用いて高効率でかつ安価に溶鉄の精錬を行うことができる精錬剤およびそれを用いた精錬方法を提供すること。
【解決手段】精錬剤は、AlとMgOとCaOとを主成分とし、MgO源およびCaO源としてドロマイトを含み、Al/MgOが質量比で0.05以上であり、CaO/MgOが質量比で1.5超え〜10.0である。 (もっと読む)


【課題】精錬の際に生成した精錬副成物Sに含まれる有価元素を簡単に回収することができるようにする。
【解決手段】精錬の際に生成した精錬副成物Sから有価元素を回収する方法であって、精錬副成物Sに含有される回収目的とする有価元素の化合物の一部又は全部が溶融した状態で、当該化合物との間で固溶体を生成する化合物を含み、且つ空隙率が15%以上となる固体物6と接触させることで有価元素を回収する。精錬副成物Sは製鋼工程における脱りん処理若しくは脱炭処理で生成したスラグであり、スラグSと主成分がMgOの固体物6を1350℃〜1400℃で接触させることによりFe及びMnを回収する。 (もっと読む)


【課題】CaO系脱硫材を高速で吹き込む脱硫処理において、低硫域においても脱硫CaO効率が低下しない脱硫方法を提供する。
【解決手段】溶銑へ金属Alを添加した後に、CaO濃度が90質量%以上であり、粒径5μm以上50μm未満の粉体構成率が50%以上である脱硫材を、インジェクション方式で溶銑中に吹き込む脱硫方法である。溶銑への脱硫材の吹き込み速度が100〜300kg/minであると好ましい。インジェクション方式の脱硫において、脱硫CaO効率を低下させることなく短時間で脱硫することができるので、脱硫処理時間の短縮、精錬コストの削減、スラグ排出量削減といった効果を享受することができる。 (もっと読む)


【課題】脱りん処理の際にリサイクルスラグとして脱炭スラグを使用しても十分に脱りん処理を行うことができるようにする。
【解決手段】脱炭工程に先だって上底吹き転炉型精錬容器に脱炭工程にて生成した脱炭スラグをリサイクルして溶銑の脱りん処理を行うに際し、処理中に供給する酸素量であって脱珪反応に使用される酸素以外の酸素量と全CaOに対する前記脱炭スラグ中のCaOの割合との関係を式(1)を満たすようにし、投入する造滓剤の粒径を5〜40mmとし、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20にすると共に、底吹き攪拌動力密度εを0.5〜3.5kw/tとしている。 (もっと読む)


81 - 100 / 320