説明

Fターム[4K037GA05]の内容

薄鋼板の熱処理 (55,812) | 表面処理 (1,377) | メッキ処理 (921)

Fターム[4K037GA05]に分類される特許

241 - 260 / 921


【課題】伸び(EL)、伸びフランジ性(λ)、および曲げ性(R)の全てがバランス良く改善された加工性全般に優れた引張強度が980MPa以上の高強度冷延鋼板、および該高強度冷延鋼板を製造する技術を提供する。
【解決手段】鋼板の金属組織を、ベイナイト、残留オーステナイト、および焼戻しマルテンサイトを含む混合組織とし、特に、金属組織を走査型電子顕微鏡で観察したときに、ベイナイトを、隣接する残留オーステナイトおよび/または炭化物の平均間隔が1μm以上である高温域生成ベイナイトと、隣接する残留オーステナイトおよび/または炭化物の平均間隔が1μm未満である低温域生成ベイナイトとの複合組織として構成し、金属組織全体に対する前記高温域生成ベイナイトの面積率をa、金属組織全体に対する前記低温域生成ベイナイトと前記焼戻しマルテンサイトとの合計面積率bとしたとき、a:20〜80%、b:20〜80%、a+b:70%以上とする。 (もっと読む)


【課題】Siを比較的多量に含有する鋼板をめっき基材として溶融亜鉛めっきや合金化溶融亜鉛めっきが施される溶融亜鉛系めっき鋼板において、めっきの濡れ性、ミクロ凹凸を改善することができ、かつ、低コストで製造する製造方法および該溶融亜鉛系めっき鋼板を提供する。
【解決手段】C:0.01〜0.25%、Si:0.3〜2.0%、Mn:0.030〜3.0%、P:0.050%以下、S:0.010%以下、N:0.0060%以下、及び、sol.Al:0.5%以下を含有する化学組成を有する鋼板母材の表面に、質量%で、Fe:8.0〜15%、及び、Al:0.15〜0.50%を含有するめっき層を備える合金化溶融亜鉛めっき鋼板であって、めっき層と鋼板母材との界面での母材側脱炭層の厚さを20μm以下とする。 (もっと読む)


【課題】フレーキング性および表面性状に優れる高強度溶融亜鉛めっき鋼板、特に、自動車の車体のようにプレス成形、その中でも、複雑な成形が必要となる用途に好適な、密着性に優れた高強度溶融亜鉛めっき鋼板を提供する。
【解決手段】C:0.03〜0.20%、Mn:0.03〜3.0%、Si:0.1〜2.5%、S:0.01%以下、P:0.1%以下、sol.Al:1.0%以下、N:0.01%以下の化学組成を有する母材鋼板の表面にFe濃度で7〜15%の合金化溶融亜鉛めっき層を少なくとも片面に有する合金化溶融亜鉛めっき鋼板であって、前記合金化溶融亜鉛めっき層を酸で溶解除去した母材鋼板の表面の結晶粒内に1μm以下の微細な孔を有する結晶が、この母材鋼板の表層部に面積率で30%以上存在する。 (もっと読む)


【課題】引張強さが780MPa以上であって、鋼成分と組織を細かく調整することにより曲げ性および耐溶融金属脆化特性のいずれにも優れたZn−Al−Mg系めっき鋼板を提供する。
【解決手段】C:0.05〜0.18質量%、Si:0.1〜0.8質量%、Mn:1.5〜2.3質量%、P:0.05質量%以下、S:0.01質量%以下、B:0.0005〜0.005質量%、Ti:0.01〜0.10質量%を含み、主相としてのフェライトと第二相としてマルテンサイトまたはマルテンサイトとベイナイトからなり、しかも、前記フェライトが8.0μm以下の平均粒径を、前記マルテンサイトが5.0μm以下の平均粒径と0.7以上の平均アスペクト比、マルテンサイトまたはマルテンサイトとベイナイトの面積率が15%以上45%未満の金属組織を備えた鋼を下地鋼板とする。 (もっと読む)


【課題】粗大な炭化物の析出の抑制、又は、炭化物を溶解することによって成形中に破断しにくく、かつ、残留オーステナイト量の増加によって強度-延性バランスが向上した鋼板及びその製造方法の提供。
【解決手段】質量%で、C:0.10〜0.40%、Mn:0.5〜3.0%、Si:0.005%以上、Al:0.005%以上、ただし、Si+Al:0.8〜2.5%、残部:Feおよび不可避的不純物からなり、上記不可避的不純物のうち、P:0.05%以下、S:0.02%以下、N:0.006%以下に制限した化学組成を有し、ミクロ組織が、面積率で10〜60%のフェライト、2〜30%の残留オーステナイト、10%以下のマルテンサイト、および残部ベイナイトからなり、セメンタイトの重量密度が5mg/cm以下であることを特徴とする成形性に優れた高強度鋼板。この鋼板の製造方法は、焼鈍の加熱温度および冷却条件を限定して上記のミクロ組織を得る。 (もっと読む)


【課題】従来の技術では、良好な表面性状と加工性を両立することが困難であったSi含有鋼において、めっき/母材界面の形状を制御することで、耐パウダリング性に優れた高張力合金化溶融亜鉛めっき鋼板を提供する。
【解決手段】鋼板の表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板である。この鋼板は、C:0.03〜0.20%,Mn:0.03〜3.0%,Si:0.1〜2.5%,sol.S:0.01%以下,P:0.1%以下,Al:1.0%以下,N:0.01%以下を含有する鋼板において、Biを0.0001〜0.05%含有させることで、合金化溶融亜鉛めっき層と母材界面から、鋼板側の深さ方向に亜鉛および亜鉛−鉄合金の侵入深さが10μm以下に制御することが可能となり、耐パウダリング性,めっき密着性,表面性状が飛躍的に向上する。 (もっと読む)


【課題】微細粒組織を有し、高強度でありながら加工性に優れた冷延鋼板、熱延鋼板の提供。
【解決手段】質量%で、C:0.06〜0.25%、Si:0.01〜2.0%、Mn:0.5〜2.0%、およびAl:0.01〜2.0%を含有し、さらに、Ti:0.20%以下とNb:0.10%以下の1種または2種を含有し、Si+AlおよびTi+Nbを所定量有し、かつ体積%で、フェライト:70%以上および残留オーステナイト:3%以上を含有し、残部がベイナイトおよび不可避的マルテンサイトとからなり、フェライトの平均粒径が3.0μm以下、残留オーステナイトの平均粒径が1.0μm以下であって、残留オーステナイトに占めるアスペクト比2以下の残留オーステナイトの割合が60体積%以上である鋼組織を有する冷延鋼板と、固溶Ti+固溶Nが0.003質量%以上の熱延鋼板。熱延鋼板および冷延鋼板の製造方法。 (もっと読む)


【課題】深絞り性と疲労特性の両方に優れる冷延鋼板とその製造方法を提供する。
【解決手段】質量%で、C:0.015〜0.15%;Si:2.0%以下;Mn:0.1〜3.0%;P:0.05%以下;S:0.05%以下;sol.Al:0.001〜0.1%;N:0.001〜0.01%;及びO:0.01%以下を含有する鋼を、最終直前圧延パスと最終圧延パスとの圧延パス間時間を0.3〜4.0秒とし、最終圧延パスの完了温度がAr3点以上かつ780℃以上、圧延完了後720℃までの冷却時間が0.4秒以内の条件で多段パス熱間圧延し、次いで圧下率40〜90%で冷間圧延を施した後、焼鈍する。得られた冷延鋼板は、TSave [=(TS0+2×TS45+TS90)/4] が300 MPa以上、YRave [=(YR0+2×YR45+YR90)/4] が0.67以上、|Δr|が0.20以下、rave/|Δr|が4.7以下 [Δr=(r0-2×r45+r90)/2、rave=(r0+2×r45+r90)/4]である。添え字0、45及び90はそれぞれ圧延方向、圧延方向に対して45°方向及び圧延方向に対して90°方向を意味する。 (もっと読む)


【課題】成形性と形状凍結性に優れ、実機製造安定性に優れた冷延鋼板およびその製造方法を提供する。
【解決手段】組成は、C:0.0010〜0.0030%、Si:0.05%以下、Mn: 0.1〜0.3%、P:0.05%以下、S:0.02%以下、Al:0.02〜0.10%、N:0.005%以下、Nb:0.010〜0.030%、B:0.0010 ≦B-11/14×N≦0.0050%で、残部が鉄および不可避不純物である。そして、平均の伸び(El)が42%以上、平均のr値(r)が1.2〜1.6である。さらに、冷間圧延後の焼鈍を、圧下率CR(%)、Nb量(質量 ppm)及びB量(質量 ppm)に応じて、(820+Nb/15+B-CR)〜860℃の均熱温度で30〜200sec間保持することで、均熱温度をピンポイントで制御することなしに実機で安定的に製造することができる。 (もっと読む)


【課題】成形性と形状凍結性に優れた冷延鋼板およびその製造方法を提供する。
【解決手段】組成は、C:0.010%以上0.030%未満、Si:0.05%以下、Mn:0.3%以下、P:0.05%以下、S:0.02%以下、Al:0.02%以上0.10%以下、N:0.005%以下で、残部が鉄および不可避不純物であり、平均のr値が1.2以下であり、かつ平均の全伸びが41%以上である。熱間圧延を行い、次いで、平均冷却速度:20℃/s以下で冷却し、巻取り温度:0℃以上かつ[{8×(C量+N量×12/14)}−1850]℃〜[{0.5×(C量+N量×12/14)}+520](ただし、式中C量、N量は鋼中のC含有量(ppm)、N含有量(ppm))℃の範囲で巻取った後、圧下率:55%以上で冷間圧延を行い、次いで、焼鈍温度:650℃〜800℃で焼鈍を行うことで得られる。 (もっと読む)


【課題】加工性に優れた高強度鋼板およびその製造方法を工業的規模で実現する。
【解決手段】質量%で、C:0.07〜0.20%、Si:0.005〜1.5%、Mn:1.0〜3.1%、P:0.001〜0.06%、S:0.001〜0.01%、N:0.0005〜0.01%、Al:0.005〜1.2%を含有し、残部Feおよび不可避不純物からなり、さらに、数1に示す下記 (A)(B)(C)(D)式を満足して、金属組織がフェライトとマルテンサイトを含有することを特徴とする。
【数1】
(もっと読む)


【課題】優れた成形性および形状凍結性を具える冷延鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.0010〜0.0030%、Si:0.05%以下、Mn:0.1〜0.5%、P:0.05%以下、S:0.02%以下、Al:0.02〜0.10%、N:0.0010〜0.0050%およびNb:0.010〜0.035%を含有し、かつAl含有量およびN含有量が以下の(1)式の関係を満たし、残部はFeおよび不可避的不純物の組成からなる冷延鋼板であって、該冷延鋼板が平均粒径:8〜20μmのフェライト粒を主体とするの組織を有し、{211}から15°以内のフェライト粒の板面における面積率が該組織の50%以上とする。
[%Al]/[%N]≧10 ・・・(1)
ただし、[%M]は、M元素の含有量を表す(質量%)。 (もっと読む)


【課題】時効後の成形性及び形状凍結性に優れた冷延鋼板及びその製造方法を提供する。
【解決手段】C: 0.01〜0.05%、Si:0.05%以下、Mn: 0.1〜0.5%、P:0.05%以下、S:0.02%以下、Al:0.02〜0.10%、N:0.005%以下で、残部が鉄および不可避不純物であり、フェライト相主体の組織を有し、該フェライト相の平均粒径が10〜20μmで、個々のフェライト粒径を平均値で割った値の自然対数の標準偏差σAは0.30以上である。上記鋼板を得るためには、冷間圧延後焼鈍を行うに際し、600℃から均熱温度までの温度域を1〜30℃/sの平均加熱速度で加熱し、均熱温度を800〜900℃、均熱時間を30〜200sとして均熱処理し、均熱温度から550℃までの温度域を3〜30℃/sの平均冷却速度で冷却し、500〜300℃で30s以上保持し、室温で伸び率:0.5〜2.0%の歪みを加える。 (もっと読む)


【課題】優れた延性および伸びフランジ性を有する高張力冷延鋼板の製造方法を提供する。
【解決手段】下記工程(A)〜(C)を有することを特徴とする,主相がフェライトであり第二相に低温変態生成相を含む金属組織を備える冷延鋼板の製造方法:
(A)質量%で,C:0.010%超0.10%未満,Si:0.10%超2.0%以下,Mn:1.50〜3.50%,P:0.10%以下,S:0.010%以下,sol.Al:0.10%以下及びN:0.010%以下を含有する化学組成を有するスラブに,Ar3点以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板となし、前記熱延鋼板を前記圧延の完了後0.4秒間以内に720℃以下の温度域まで冷却し,400℃以上の温度域で巻取る熱間圧延工程;
(B)前記熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延工程;及び
(C)前記冷延鋼板に(Ac3点-40℃)以上の温度域で均熱処理を施す焼鈍工程。 (もっと読む)


【課題】優れた延性および伸びフランジ性を有する引張強度が590MPa以上の高張力冷延鋼板の製造方法を提供する。
【解決手段】下記工程(A)〜(C)を有することを特徴とする,主相が低温変態生成相であり第二相にフェライトを含む金属組織を備える冷延鋼板の製造方法:
(A)質量%で,C:0.020%超0.20%未満,Si:0.10%超2.0%以下,Mn:1.50%以上3.50%以下,P:0.10%以下,S:0.010%以下,sol.Al:0.10%以下及びN:0.010%以下を含有する化学組成を有するスラブに,Ar3点以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板となし,前記熱延鋼板を前記圧延の完了後0.4秒間以内に720℃以下の温度域まで冷却して,フェライトの粒界上に存在する鉄炭化物の平均数密度を5.0×10-2個/μm2以上とする熱間圧延工程;
(B)前記熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延工程;および
(C)前記冷延鋼板に(Ac3点-40℃)以上の温度域で均熱処理を施す焼鈍工程。 (もっと読む)


【課題】TSが590〜880MPa、Elが32%以上、λが70%以上で、かつ鋼板内おけるΔTSが安定して15MPa以下となる高強度熱延鋼板及びその製造方法を提供する。
【解決手段】高強度熱延鋼板が、質量%で、C:0.060〜0.150、Si:0.1以下、Mn:0.8〜1.8、P:0.030以下、S:0.005以下、Al:0.005〜0.1、N:0.005以下、Ti:0.032〜0.120、残部がFe及び不可避的不純物からなり、C、Ti、Nを数式で規定し、フェライト(F)相と、ベイナイト(B)相を含む第二相とからなり、組織全体に占めるF相の面積率が65〜80%で、組織全体に占めるF相とB相の合計の面積率が95%以上であり、F相の面積率のばらつきΔSFが2%以下で、F相と第二相のビッカース硬度差の絶対値|ΔHv|が150以下であるミクロ組織を有する。 (もっと読む)


【課題】優れた延性および伸びフランジ性を有する引張強度が590MPa以上の高張力冷延鋼板の製造方法を提供する。
【解決手段】下記工程(A)〜(C)を有することを特徴とする,主相が低温変態生成相であり第二相にフェライトを含む金属組織を備える冷延鋼板の製造方法:
(A)質量%で,C:0.020%超0.20%未満,Si:0.10%超2.0%以下,Mn:1.50〜3.50%,P:0.10%以下,S:0.010%以下,sol.Al:0.10%以下及びN:0.010%以下を含有する化学組成を有するスラブに,Ar3点以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板となし,前記熱延鋼板を前記圧延の完了後0.4秒以内に720℃以下の温度域まで冷却し,400℃以上の温度域で巻取る熱間圧延工程;
(B)前記熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延工程;及び
(C)前記冷延鋼板に(Ac3点-40℃)以上の温度域で均熱処理を施す焼鈍工程。 (もっと読む)


【課題】TSが690〜980MPa、Elが27%以上、λが50%以上で、かつ鋼板内におけるTSのばらつきΔTSが安定して15MPa以下となる高強度熱延鋼板及びその製法を提供する。
【解決手段】高強度熱延鋼板が、質量%で、C:0.060〜0.150、Si:0.1以下、Mn:0.8〜1.8、P:0.030以下、S:0.005以下、Al:0.005〜0.1、N:0.005以下、Ti:0.032〜0.120を含み、残部Fe及び不可避的不純物からなり、C、Ti、Nを数式で規定し、フェライト(F)相とマルテンサイト(M)相を含む第二相とからなり、F相の面積率が65〜80%で、F相とM相の合計の面積率が95%以上であり、F相の面積率のばらつきΔSFが2%以下で、F相と第二相のビッカース硬度差ΔHvが250以下であるミクロ組織を有する。 (もっと読む)


本発明は、質量%で、次の元素:0.10〜0.18%のC、1.90〜2.50%のMn、0.30〜0.50%のSi、0.50〜0.70%のAl、0.10〜0.50%のCr、0.001〜0.10%のP、0.01〜0.05%のNb、最大0.004%のCa、最大0.05%のS、最大0.007%のNと、場合により次の元素のうち少なくとも1種:0.005〜0.50%のTi、0.005〜0.50%のV、0.005〜0.50%のMo、0.005〜0.50%のNi、0.005〜0.50%のCu、最大0.005%のB、残部であるFeおよび不可避不純物からなり、0.80%<Al+Si<1.05%およびMn+Cr>2.10%である、高強度溶融亜鉛めっき鋼帯に関する。この鋼材は高強度で改善された成形性を呈し、良い生産性および被覆性と一緒に良い溶接性および表面品質を有している。 (もっと読む)


【課題】めっき密着性に優れたSi及びMn含有溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を提供する。
【解決手段】素地鋼板に合金化されたまたは合金化されていない溶融亜鉛めっき層が形成されためっき鋼板であって、前記素地鋼板と前記溶融亜鉛めっき層との界面に、Si−Mn−Oおよび鉄亜鉛合金を含む酸化物含有層を有し、前記酸化物含有層の素地鋼板側の表面は、網目状の凸部と、該凸部によって分割された複数の凹部とを有し、インターセプト法で算出した前記凹部の平均直径が3.0μm以上10.0μm以下であり、前記凸部の平均幅が0.2μm以上3.0μm以下を満足するめっき鋼板である。 (もっと読む)


241 - 260 / 921