説明

Fターム[4K042CA05]の内容

物品の熱処理 (24,439) | 合金成分及び鋼種 (6,105) | 合金成分を規定するもの (5,737) | Cu (449)

Fターム[4K042CA05]に分類される特許

121 - 140 / 449


本発明は、マルテンサイト系鋼が0.4%〜3%のAl含有量で、金属間化合物および炭化析出物によって硬化されることができるように、他の金属の含有量を含むマルテンサイト系鋼を製造する方法に関し、(a)鋼の全体をそのオーステナイト化温度よりも上に加熱するステップと、(b)前記鋼をおよそ周囲温度に冷却するステップと、(c)前記鋼を低温媒体中に配置するステップと、を含む。温度Tは、実質的にマルテンサイト変態温度Mf未満であり、鋼の最も熱い部品がマルテンサイト変態温度Mfより低い温度に達した瞬間から温度Tで前記鋼が前記低温媒体中に保持される時間tが、少なくともゼロ以外の時間tに等しく、温度T(℃で)および時間t(時間で)は、式T=f(t)によって関連付けされており、t,f’(t)に関する関数fの一次導関数は、正であり、t,f”(t)に関するfの二次導関数は負である。
(もっと読む)


【課題】腐食攻撃から保護される高強度コンポーネンツを、既知の方法よりも一層容易に製造できる方法を提供することにある。
【解決手段】上記課題のため、本発明によれば、a)所望の組成を有するステンレス鋼から少なくとも数セクションが作られた鋼製品を用意する段階と、b)鋼製品を、ステンレス鋼のAc3温度より高いオーステナイト化温度に加熱する段階と、c)加熱された鋼製品を、プレスダイ内でコンポーネントに熱間プレス硬化する段階と、d)得られたコンポーネントの少なくとも1つのセクションを、マルテンサイト構造にとって充分高い冷却速度で冷却し、急速冷却されたセクションを形成する段階とを有する熱間プレス硬化コンポーネントの製造方法が提供される。 (もっと読む)


【課題】スパイダ等、捩り強度や曲げ強度等の疲労強度、さらには靭性が希求される部材の素材として好適な浸炭材を提供する。
【解決手段】質量%で、C:0.1〜0.3%、Si:0.5%以下、Mn:1.5%以下、Cr:0.35〜0.8%、Mo:0.15〜0.7%、Nb:0.005〜0.2%、Ti:0.01〜0.1%、B:0.001〜0.003%、N:0.01%以下、s−Al:0.06%以下、P:0.03%以下、S:0.03%以下を含有し、残部がFe及び不可避的不純物である鋼材に対して浸炭処理を施し、有効硬化層の厚みが0.4〜1.1mmである浸炭材とする。スパイダ18の形状とする場合には、例えば、前記鋼材に対して熱簡鍛造加工を行って成形品を得た後、浸炭焼入れ処理、焼戻し処理を施せばよい。 (もっと読む)


【課題】 従来よりも低サイクル曲げ疲労強度に優れた浸炭鋼部品を提供する
【解決手段】 化学成分が、質量%で、C:0.1〜0.6%、Si:0.01〜1.5%、Mn:0.3〜2.0%、P:0.02%以下、S:0.001〜0.15%、N:0.001〜0.03%、Al:0.001〜0.06%、O:0.005%以下を含有し、残部が実質的に鉄と不可避的不純物よりなる鋼からなり、浸炭焼入れ焼戻し処理を施した鋼部品であって、表面の硬さがHV550〜HV800であり、心部の硬さがHV400〜HV500であることを特徴とする低サイクル曲げ疲労強度に優れた浸炭鋼部品。 (もっと読む)


【課題】高い高温機械強度と良好な熱間加工性を有する排気バルブ用耐熱鋼及びその製造方法を提供する。
【解決手段】必須添加元素と任意に含まれ得る任意添加元素とを添加元素とする質量%で、0.50〜0.90%のC及び15.0〜25.0%のCrを含み、微細炭化物及び/又は微細炭窒化物を少なくとも結晶粒内に分散析出させた高窒素高Crオーステナイト鋼からなる排気バルブ用耐熱鋼である。必須添加元素をC、Cr、N、Mn、Ni及びPとして、任意添加元素をNb、Ti、Si、W、Mo、V、Co、B、Zr、Mg、Ca及びCuとし、所定の質量%を含有する。かかる排気バルブ用耐熱鋼は、鍛造工程と、1000〜1200℃の温度範囲で保持した後に油冷する固溶化熱処理工程と、700〜800℃の温度範囲で時効処理する工程とを経て製造される。 (もっと読む)


【課題】炭素鋼からなる鍛鋼品の耐水素割れ性を、合金元素添加という手段によらずに、組織設計によって向上させること。
【解決手段】C:0.15〜0.50%、Si:0.6%以下、Mn:0.5〜1.4%、Ni:0.1〜2.5%、Cr:0.1〜1.1%、Mo:0.1〜0.7%、V:0.01〜0.3%、S:0.0002〜0.01%、及びO:0.002%以下を含有し、残部が鉄及び不可避的不純物からなり、深さD/4(D:鍛鋼品の直径)の鋼断面において観察される組織が、フェライト組織またはフェライト−パーライト混合組織が90面積%以上であり、且つベイナイト組織が0.008〜5面積%であり、ベイナイト組織の平均粒径が10μm以下であり、ベイナイト組織の最大粒径が50μm以下であり、ベイナイト組織のラス間隔が1.0μm以下である鍛鋼品。 (もっと読む)


【課題】少なくとも片面にめっき皮膜を有する鋼材の少なくとも一部を焼入れ可能温度域に加熱した後に冷却する熱処理を行っても、自動車用部材としての塗装後の適正な耐食性を有し、熱処理に伴うスケールの発生を抑制できる被覆熱処理鋼材を提供する。
【解決手段】少なくとも一つの面に被覆されたアルミニウム系めっき皮膜を備える鋼材を、Ac点以下の温度で合金化処理された鋼材の少なくとも一部を焼入れ可能温度域に加熱する熱処理を行われてなる被覆熱処理鋼材であって、熱処理を行われた部分の少なくとも一部の表面に鉄−アルミニウムが合金化された皮膜を有し、この皮膜が、耐食性を有し、かつ高温で潤滑機能を確保し得ることを特徴とする被覆熱処理鋼材である。 (もっと読む)


【課題】 Caなどの快削性元素を添加せずに超硬ドリル加工などの切削加工性を保ち、高価な合金元素を極力使用せずに疲労強度を向上させたフェライト−パーライト型熱間鍛造用非調質鋼を提供する。
【解決手段】 質量%で、C:0.30〜0.50%、Si:0.40〜1.00%、Mn:1.00〜1.60%、P:0.035%以下、S:0.005〜0.035%、Al:0.005〜0.050%、V:0.10〜0.30%、N:0.0300%以下、O:0.0080%以下を含有し、残部Feおよび不可避不純物からなり、かつ、炭素当量Ceqが0.70≦Ceq≦1.05を満足し、熱間圧延もしくは熱間鍛造した後、空冷した状態で、0.2%耐力が550MPa以上および引張強度に対する0.2%耐力の割合である耐力比が62%以上を満足するフェライト−パーライト組織であるフェライト−パーライト型熱間鍛造用非調質鋼。 (もっと読む)


【課題】少なくとも片面にめっき皮膜を有する鋼材の少なくとも一部を焼入れ可能温度域に加熱した後に冷却する熱処理を行っても、自動車用部材としての塗装後の適正な耐食性を有し、熱処理に伴うスケールの発生を抑制できる被覆熱処理鋼材を提供する。
【解決手段】少なくとも一つの面にアルミニウムベース合金のめっき皮膜を有する鋼材の少なくとも一部を焼入れ可能温度域に加熱する熱処理を行われてなる被覆熱処理鋼材であって、熱処理を行われた部分の少なくとも一部の表面に鉄−アルミニウムが合金化された皮膜を有し、この皮膜が耐食性を有し、かつ高温で潤滑機能を確保し得る皮膜である被覆熱処理鋼材である。 (もっと読む)


【課題】特に異物環境下での転動疲労寿命の大幅な向上を実現する方途について提案する。
【解決手段】質量%でC:0.7%〜1.3%、Si:0.1〜0.8%、Mn:0.2〜1.2%、P:0.025%以下、S:0.02%以下、Al:0.1%以下、Cr:0.9%〜1.8%、N:0.01%以下およびO:0.003%以下を含有し、残部Fe及び不可避的不純物からなる鋼材に、浸炭窒化深さが2mm以上となる浸炭窒化−焼入れ処理を行ったのち、高周波焼戻しを行い、その後の成形加工において、硬さの向上代がビッカース硬さで20ポイント以上の加工を少なくとも鋼材の表層部分に加えた後、該表層部分に加熱温度:820〜900℃として高周波焼入れし、さらに焼戻しを行う。 (もっと読む)


【課題】特に異物環境下での転動疲労寿命の大幅な向上を実現する方途について提案する。
【解決手段】質量%でC:0.7%〜1.3%、Si:0.1〜0.8%、Mn:0.2〜1.2%、P:0.025%以下、S:0.02%以下、Al:0.1%以下、Cr:0.9%〜1.8%、W:0.5%〜2.0%、N:0.01%以下およびO:0.003%以下を含有し、残部Fe及び不可避的不純物からなる鋼材に、浸炭窒化深さが2mm以上となる浸炭窒化−焼入れ処理を行ったのち、高周波焼戻しを行い、その後の成形加工において、硬さの向上代がビッカース硬さで20ポイント以上の加工を少なくとも鋼材の表層部分に加えた後、該表層部分に加熱温度820〜900℃として高周波焼入れし、さらに焼戻しを行う。 (もっと読む)


【課題】高炭素含有のレール鋼片において、仕上げ圧延後にレール頭部表面を加速冷却し、その後、オーステナイト域まで昇温・保持し、更に加速冷却することにより、海外の貨物鉄道で使用されるレール靭性を向上させ、使用寿命を向上させる。
【解決手段】質量%で、C:0.60〜1.20%、Si:0.05〜2.00%、Mn:0.05〜2.00%を含有し、残部がFe及び不可避的不純物からなるレール圧延用鋼片を粗圧延、中間圧延、引き続いて仕上圧延を行い、A3又はAcm線〜1000℃の温度を有したレール頭部表面を、冷却速度2〜20℃/secで450〜680℃まで急冷し、その後、A3又はAcm線〜950℃の温度域まで昇温速度2〜50℃/secで温度上昇させ、その後、当該温度範囲内で1.0〜900sec保持し、さらにその後、冷却速度5〜30℃/secで450〜650℃まで加速冷却することを特徴とする高炭素鋼レールの製造方法。 (もっと読む)


【課題】リング形状を有し、異方性がほとんど生じず、各所において均質な機械的性質を得ることができ、さらに、容易に製造することができる耐熱鋼部材およびその製造方法を提供することを目的とする。
【解決手段】耐熱鋼部材は、重量%で、C:0.06〜0.18%、Si:0.05〜0.6%、Mn:0.2〜0.8%、Cr:9〜11.5%、Ni:0.1〜1%、Mo:0.8〜1.3%、Nb:0.05〜0.5%、V:0.07〜0.3%、N:0.03〜0.08%を含有し、残部がFeおよび不可避的不純物からなり、遠心鋳造でリング形状に成形されている。 (もっと読む)


【課題】特に異物環境下での転動疲労寿命の大幅な向上を実現する方途について提案する。
【解決手段】C:0.7%〜1.3%、Si:0.1〜0.8%、Mn:0.2〜1.2%、P:0.025%以下、S:0.02%以下、Ti:0.01〜0.03%、Al:0.1%以下、Cr:0.9%〜1.8%、Mo:0.3%以下、N:0.005%以下およびO:0.003%以下を、0.005+3.42×N[質量%]≦Ti[質量%]を含有し、残部Fe及び不可避的不純物からなる鋼材に、浸炭窒化−焼入れ処理を行ったのち、高周波焼戻しを行い、その後の成形加工において、硬さの向上代がビッカース硬さで20ポイント以上の加工を少なくとも鋼材の表層部分に加えた後、該表層部分に高周波焼入れし、焼戻しを行う。 (もっと読む)


【課題】高い耐コラプス性能が要求される深海用ラインパイプへの使用に適した、圧縮強度が高いラインパイプの製造方法を提供する。
【解決手段】質量%で、C、Si、Mn、P、S、Al、Nb、Ti、必要に応じてCu、Ni、Cr、Mo、V、Caの1種または2種以上を含有し、C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)が0.05以上、残部Fe及び不可避的不純物からなる鋼を、1000〜1200℃に加熱し、未再結晶温度域の圧下率が50%以上、かつAr3温度以下の圧下率が10%以上で、圧延終了温度が(Ar3−70℃)〜Ar3の熱間圧延を行い、引き続き10℃/秒以上の冷却速度で、300超え〜550℃まで加速冷却した鋼板を、冷間成形により鋼管形状とし、突き合せ部をシーム溶接し、次いで拡管率が0.5%〜1.5%の拡管した鋼管に、表面温度が150〜300℃、150℃以上に加熱される時間が1分以上、5分未満となる熱処理を行う。必要に応じて、加速冷却後に、鋼板表面温度:450〜700℃で、加速冷却停止時の鋼板温度より50℃以上の温度に再加熱処理を施す。 (もっと読む)


【課題】浸炭処理等の表面硬化処理をして使用される鋼部品を製造するのに有用な、結晶粒を高度に制御した肌焼鋼を提供する。
【解決手段】C:0.10〜0.25%(質量%の意味。以下、化学成分組成について同じ。)、Si:0.45%以下(0%を含まない)、Mn:0.60%以下(0%を含まない)、Cr:2.5%以下(0%を含まない)、Ti:0.010〜0.060%を含有し、残部は鉄および不可避不純物であり、面積10μm2以上のTi系硫化物および/またはTi系炭硫化物の合計面積率が1×10-5〜1.0×10-4%であり、下記式(1)を満足する。このような肌焼鋼は、最大結晶粒の縮小化特性に優れている。A/[Ti]≦0.080…(1)(式中、Aは面積10μm2以上のTi系の炭化物、炭窒化物、窒化物、硫化物、および炭硫化物の合計面積率(%)を示す。[Ti]は鋼中のTi含有量(質量%)を示す。) (もっと読む)


良好な窒化特性を有する特にピストンリングとシリンダーライナの製造用の鋼組成物は、該鋼組成物100重量%に対して表示された以下の割合の元素、0.5〜1.5重量%のAl、0.5〜1.2重量%のC、68.2〜96.9重量%のFe、0.1〜3.0重量%のMn、2.0〜10.0重量%のSiを含有する。これは、出発材料の溶融塊を製造し、溶融塊を調整型に流し込むことにより製造し得る。得られた鋼組成物を窒化すると、焼入れ焼戻した球状黒鉛鋳鉄を上回る特性を有する重力鋳造製造により製造される窒化鋼組成物を得る。 (もっと読む)


良好な窒化特性を有する鋼組成物を本体として含む鋼製ピストンリングと鋼製シリンダーライナを開示する。鋼組成物は以下の元素、0〜0.5重量%のB、0.5〜1.2重量%のC、4.0〜20.0重量%のCr、0〜2.0重量%のCu、45.30〜91.25重量%のFe、0.1〜3.0重量%のMn、0.1〜3.0重量%のMo、0〜0.05重量%のNb、2.0〜12.0重量%のNi、0〜0.1重量%のP、0〜0.05重量%のPb、0〜0.05重量%のS、2.0〜10.0重量%のSi、0〜0.05重量%のSn、0.05〜2.0重量%のV、0〜0.2重量%のTi、および0〜0.5重量%のWからなる。鋼製ピストンリングと鋼製シリンダーライナは、鋳鉄部品の製造用の機械および技術を使用する鋳造プロセスで製造し得る。 (もっと読む)


【課題】最適な強度と高い延性とを兼ね備えることから、自動車のボデー構造部品、足回り部品等を始めとする機械構造部品等に用いるのに好適な熱間プレス用鋼板を提供する。
【解決手段】C:0.15〜0.45%、Mn+Cr:0.5〜3.0%、P:0.05%以下、S:0.03%以下、Si:0.5%以下およびAl:1%以下を含有し、残部Feおよび不純物からなる化学組成を有し、フェライト中に炭化物が分散した鋼組織であって、フェライトの平均粒径D(μm)が3〜13μm、分散した炭化物の平均すきま間隔λ(μm)が5μm以下で、かつD<90λを満足する鋼組織を有するとともに、0.2%耐力が310〜400MPa、引張強さが400MPa以上、均一伸びが12%以上および全伸びが20%以上である機械特性を有する熱間プレス用鋼板である。 (もっと読む)


良好な窒化特性を有する特にピストンリングとシリンダーライナの製造用の鋼組成物は、該鋼組成物100重量%に対して表示された以下の割合の元素、0.5〜1.2重量%のC、4.0〜20.0重量%のCr、45.30〜91.25重量%のFe、0.1〜3.0重量%のMn、0.1〜3.0重量%のMo、2.0〜12.0重量%のNi、2.0〜10.0重量%のSi、そして0.05〜2.0重量%のVを含有する。これは、出発材料の溶融塊を製造し、溶融塊を調整型に流し込むことにより製造し得る。得られた鋼組成物を窒化すると、焼入れ焼戻した球状黒鉛鋳鉄を上回る特性を有する重力鋳造製造により製造される窒化鋼組成物を得る。 (もっと読む)


121 - 140 / 449