説明

Fターム[4K070AC14]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 原料 (1,319) | 副原料 (650) | 酸化物・水酸化物 (444) | 生石灰(CaO) (180)

Fターム[4K070AC14]に分類される特許

41 - 60 / 180


【課題】溶銑の脱りん吹錬の吹錬において、効率的に低りん溶銑を製造することができ、且つ、実操業にも問題なく適用することができる、吹錬方法、吹錬システム、低りん溶銑の製造方法及び低りん溶銑の製造装置を提供する。
【解決手段】 上底吹き転炉を用いて、溶銑の浴面に酸素を吹き付けるとともに粉状CaO含有脱りん剤を吹き付ける、溶銑脱りんにおける吹錬方法であって、吹錬中の排ガス流量、排ガス成分、上底吹きガス流量、副原料投入量及び溶銑成分から酸素バランスを計算して得られる炉内蓄積酸素量原単位を逐次求め、吹錬初期における炉内蓄積酸素量原単位の値が所定値以上となるように、粉状CaO含有脱りん剤の投入開始時期を制御することを特徴とする吹錬方法とし、当該方法を用いた吹錬システム、低りん溶銑の製造方法や製造装置とする。 (もっと読む)


【課題】3基の転炉を用いて脱りん処理と脱炭処理とを行う操業において、高効率で操業を行うことができるようにする。
【解決手段】3基の転炉2A、2B、2Cを備え、第1転炉2Aで出湯された溶銑を受ける取鍋3が第1転炉2Aの装入側へ移動可能となっている転炉設備1において、(i) 第1転炉2Aへ脱りん用の溶銑を装入する作業と、第1転炉2Aにて処理した脱りん処理後の溶銑を第2転炉2B又は第3転炉2Cへ装入する作業とを同時に行った上で、第1転炉2Aにて脱りん処理を行うと共に第2転炉2B又は第3転炉2Cにて脱炭処理を行う。(ii)(i)において第2転炉2Bにて脱炭処理を行った場合は第3転炉2Cに溶銑を装入して脱炭処理を行い、(i)において第3転炉2Cにて脱炭処理を行った場合は第2転炉2Bに脱りん処理後の溶銑を装入して脱炭処理を行う。 (もっと読む)


【課題】脱珪処理と脱りん処理とを同一の転炉型精錬炉にて行うに際して脱珪及び脱りん処理の時間を十分に短縮しつつ精錬を行うことができるようにする。
【解決手段】溶銑を装入した後の転炉型精錬炉の空間容積を0.2〜0.6m3/tとした上で、スラグの塩基度を0.7〜1.0とし、脱珪に必要な計算必要酸素量の2〜3倍の酸素を固体酸素源と気体酸素とにより供給し、供給時の固体酸素源の平均酸素供給速度を0.8〜2.5kg−O/t/minとし且つ気体酸素の平均酸素供給速度を0.9〜1.4Nm3/t/minとした脱珪処理を1回以上行うと共に当該脱珪処理における珪素の低下量を0.4〜0.6質量%とし、脱珪処理を経ることにより脱りん処理前の溶銑の珪素濃度が0.4質量%以下になるようにし、脱珪処理終了後には転炉型精錬炉の傾動による脱珪スラグの排滓を行わずに、引き続き脱りん処理を行う。 (もっと読む)


【課題】脱珪処理と脱りん処理とを同一の転炉型精錬炉にて行うに際して脱珪及び脱りん処理の時間を十分に短縮しつつ精錬を行うことができるようにする。
【解決手段】溶銑を装入した後の転炉型精錬炉の空間容積を0.6〜1.5m3/tとした上で、スラグの塩基度を0.7〜1.0とし、脱珪に必要な計算必要酸素量の2.5〜4倍の酸素を固体酸素源と気体酸素とにより供給し、供給時の固体酸素源の平均酸素供給速度を1.5〜2.5kg−O/t/minとし且つ気体酸素の平均酸素供給速度を1.5〜3Nm3/t/minとした脱珪処理を1回以上行うと共に当該脱珪処理における珪素の低下量を0.5〜0.7質量%とし、脱珪処理を経ることにより脱りん処理前の溶銑の珪素濃度が0.4質量%以下になるようにし、脱珪処理終了後には転炉型精錬炉の傾動による脱珪スラグの排滓を行わずに、引き続き脱りん処理を行う。 (もっと読む)


【課題】処理中における炉壁及び炉口へのスピッティング粒鉄の付着を抑制し、かつ処理後の溶銑中[P]濃度を0.007質量%以下とする。
【解決手段】上底吹き転炉型精練容器内への溶銑装入と前後して塊状のCaO含有物質を添加し,上吹きランスから粉状のCaO含有物質を伴わずに酸素含有ガスを該溶銑へ吹き付けて該溶銑上にカバースラグを生成した後に該上吹きランスから粉状のCaO含有物質を伴って酸素含有ガスを該溶銑へ吹き付けて該溶銑の脱燐処理を行う。全酸素供給時間の40%以上が経過した後、該全酸素供給時間の70%が経過するまでの期間中に,CaOを30〜50質量%,FetOを40〜65質量%,SiO2を1.0〜10質量%以下及びAl2O3を1.0〜20質量%含有し,かつそれらの4成分の合計が90質量%以上であるプリメルトフラックス2〜12kg/tを添加し,かつ処理後のスラグ塩基度を2.2〜3.1とする。 (もっと読む)


【課題】転炉を用いて生石灰などCaOを主成分とする粉体精錬剤を酸素と共に溶銑に吹き付ける溶銑予備脱燐において、炉内耐火物の溶損を抑制すると共に、転炉内付着地金を効率的に除去する方法を提供する。
【解決手段】溶銑を転炉型精錬炉に装入後、側壁に地金溶解用ノズルを設置した上吹きランスを該精錬炉に挿入して、該上吹きランスの先端に設置した吹錬用ノズルより粉体精錬剤を吹錬用酸素と共に溶銑に吹き付けて脱燐する溶銑予備脱燐吹錬において、前記粉体精錬剤の吹付け期間中には前記側壁に設置した地金溶解用ノズルから地金溶解用酸素を水平方向に噴射させ、前記粉体精錬剤の吹付け終了から前記吹錬用酸素の吹付け終了までは、前記側壁に設置した地金溶解用ノズルが閉塞しないように該地金溶解用ノズルからパージガスを流し続けることを特徴とする転炉内付着地金の除去方法。 (もっと読む)


【課題】転炉精錬前の溶銑予備処理として脱リン処理を行わずに、転炉精錬時に効率的に十分な脱リンを行う。
【解決手段】途中測定時(吹錬進行度80%以降)での溶鋼のリン濃度が所定値以下となるための、吹錬進行度40%の時点でのFeO生成量を、FeO生成量目標値として設定する。吹錬中の炉内における酸素供給量OINと酸素排出量OOUT との差ΔWO2(=OIN−OOUT )を逐次算出し、その算出値に基づいてFeO生成量を推定する。このFeO推定値が前記FeO生成量目標値となるように、ランス2から吹き付ける酸素の流量、ランス2の湯面からの高さh、ホッパー5からのCaOの投入量、および底吹きノズル3から吹き込むArガス(撹拌ガス)の流量のいずれか1以上の条件を調整して吹錬を行う。 (もっと読む)


【課題】攪拌動力密度と固体酸素比率とを掛け合わせたパラメータZと、脱珪外酸素量との関係、生石灰の粒径、L/L0、溶銑温度を適正範囲にすることにより、脱りん効率を向上させることができるようにする。
【解決手段】溶銑の脱りん処理を行うに際し、処理中の底吹き攪拌動力密度をX[kw/t]と固体酸素比率Y[%]との積をパラメータZと定義し、脱珪外酸素量GO2とZとの関係を0.00065×Z2−0.12×Z+12.5≦GO2とし、生石灰の粒径を5〜40mmとし、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20にすると共に、脱りん処理後の溶銑温度を1280〜1340℃として脱りん処理を行う。 (もっと読む)


【課題】 蛍石などのフッ素源を使用しなくともCaO系媒溶剤を迅速に滓化させることができ、溶銑を効率的に且つ安価に脱燐することのできる脱燐処理方法を提供する。
【解決手段】 上吹きランス1の軸心部に配置した中心孔4から不活性ガスを搬送用ガスとして脱燐用媒溶剤を溶銑に向けて噴出すると同時に、前記中心孔の周囲に設けた燃料供給ノズル6及び酸素含有ガス供給ノズル7により、前記中心孔からの噴出流の周囲に酸素含有ガスと燃料との反応による火炎の包囲帯を形成させ、且つ、前記中心孔の周囲に設置された3孔以上の周囲孔5から酸素含有ガスを溶銑の浴面に向けて吹き付ける。 (もっと読む)


【課題】上底吹転炉を用いて、脱燐剤に実質的にフッ素を含む副原料を使わずに、上吹き酸素流量が2.0〜4.0Nm3/min/tの条件で溶銑から燐を除去する方法において、その脱燐処理を高能率かつ高効率で行う方法を提供する。
【解決手段】底吹き流量を0.15〜1.5Nm3/min/tとして該脱燐処理後のスラグ中T.Fe質量濃度が3〜15質量%となるように調整し、前記脱燐処理中に該溶銑に含有される炭素濃度を2.8〜3.2質量%に一旦低下させ、その後、該溶銑に炭素源を供給して前記脱燐処理後に該溶銑に含有される炭素濃度を3.4〜3.8質量%に調整する。 (もっと読む)


【課題】極低りん鋼溶製のために、効率良く確実に溶銑りん濃度を低位にすることができるようにする。
【解決手段】脱炭工程に先だって上底吹き転炉型精錬容器にて気体酸素及び固体酸素源を供給して溶銑の脱りん処理を行うに際し、全酸素に対する前記固体酸素源の酸素比率を10〜60%とし、処理中に供給する酸素量であって脱珪反応に使用される酸素以外の酸素量を16Nm3/t〜22Nm3/tとし、投入する生石灰の粒径を5〜40mmとし、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20にすると共に、底吹き攪拌動力密度εを0.5〜3.5kw/tとし、脱りん処理後の溶銑温度を1280〜1340℃として脱りん処理を行う。 (もっと読む)


【課題】同一の転炉で脱りん精錬と脱炭精錬を行うことによるメリットを享受しつつ、P規格の特に厳しい極低りん鋼についても安定的に溶製することのできる転炉精錬方法を提供する。
【解決手段】上底吹き転炉を用いて鋼を精錬するに際し、第1工程で溶銑を転炉に装入し、第2工程でフラックスを用いた転炉上底吹き精錬により溶銑脱りんを行い、第3工程で転炉を傾動して第2工程で生成したスラグの一部又は全部を排出し、第4工程でフラックスを追加して転炉上底吹き精錬により溶銑脱りんを行い、第5工程で転炉を傾動して第4工程で生成したスラグの一部又は全部を排出し、第6工程で転炉上底吹き精錬により脱炭を行う。最初の脱りん精錬とその後のスラグ除去の後、フラックスを追加して第2の脱りん精錬とスラグ除去を行い、さらにその後に脱炭精錬を行うので、脱炭精錬終了後の溶鋼中P濃度を十分に極低P鋼レベルまで低減できる。 (もっと読む)


【課題】上底吹き転炉で、上吹き酸素流量を2.0〜5.0Nm3/min/溶銑t、底吹きガス流量を0.2〜0.6Nm3/min/溶銑t以下としてCaO含有粉体を上吹き酸素と共に溶銑へ上吹きして溶銑脱りんする方法において、スロッピングによる鉄歩留まり低下を抑制でき且つ高脱りん率が得られる方法を提供する。
【解決手段】CaO含有粉体中に含まれるCaOと上吹き酸素との質量比CaO/Oを式(A)の範囲とする。
0.036763×Qo2-0.26492×QB+0.366557
< CaO/O < 0.040893×Qo2-0.26492×QB+0.939606 (A)
ここで、
Qo2:上吹き酸素流量(Nm3/min/溶銑t)、
QB:底吹きガス流量(Nm3/min/溶銑t)、
CaO:CaO含有粉体上吹き期間中の、該粉体に含まれるCaOの平均質量供給速度(kg/min/溶銑t)、および
O:CaO含有粉体上吹き期間中の、上吹き酸素の平均質量供給速度(kg/min/溶銑t)
である。 (もっと読む)


【課題】 溶銑または溶鋼を酸化精錬するにあたり、効率的な酸化精錬が可能であると同時に転炉型精錬容器の付着地金を効率的に溶解するための上吹きランスを提供する。
【解決手段】 本発明の精錬用上吹きランス1は、上吹きランスの先端部に、鉛直下向きまたは斜め下向き方向の主孔ノズル11及び副孔ノズル12を有し、前記先端部から上方に隔離した位置の上吹きランスの側面部に、水平または斜め下向き方向の二次燃焼用ノズル13を有し、且つ、上吹きランスの内部には、固体酸素源とは異なる粉体を吹錬用の酸素含有ガスとともに前記主孔ノズルを通じて供給するか、または、吹錬用の酸素含有ガスを、前記主孔ノズルを通じて供給するための第1の供給経路と、二次燃焼用の酸素含有ガスを、前記二次燃焼用ノズルを通じて供給するための第2の供給経路と、粉体状の固体酸素源を、搬送用ガスとともに前記副孔ノズルを通じて供給するための第3の供給経路と、を有する。 (もっと読む)


【課題】精錬の際に生成した精錬副成物Sに含まれる有価元素を簡単に回収することができるようにする。
【解決手段】精錬の際に生成した精錬副成物Sから有価元素を回収する方法であって、精錬副成物Sに含有される回収目的とする有価元素の化合物の一部又は全部が溶融した状態で、当該化合物との間で固溶体を生成する化合物を含み、且つ空隙率が15%以上となる固体物6と接触させることで有価元素を回収する。精錬副成物Sは製鋼工程における脱りん処理若しくは脱炭処理で生成したスラグであり、スラグSと主成分がMgOの固体物6を1350℃〜1400℃で接触させることによりFe及びMnを回収する。 (もっと読む)


【課題】脱りん処理の際にリサイクルスラグとして脱炭スラグを使用しても十分に脱りん処理を行うことができるようにする。
【解決手段】脱炭工程に先だって上底吹き転炉型精錬容器に脱炭工程にて生成した脱炭スラグをリサイクルして溶銑の脱りん処理を行うに際し、処理中に供給する酸素量であって脱珪反応に使用される酸素以外の酸素量と全CaOに対する前記脱炭スラグ中のCaOの割合との関係を式(1)を満たすようにし、投入する造滓剤の粒径を5〜40mmとし、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20にすると共に、底吹き攪拌動力密度εを0.5〜3.5kw/tとしている。 (もっと読む)


【課題】低りん鋼の製造と、副生する製鋼スラグの強アルカリ化と膨張の抑制を、経済的に安定に両立させる。
【解決手段】溶銑脱りんと転炉吹錬を行うプロセスにおいて、溶銑脱りん工程では脱炭滓と粒径1mm以下のCaO源を用い、その他にはCaO源を添加せずに脱りん処理を行う。溶銑の脱りん工程での塩基度を1.8以下とする。また、脱炭工程での塩基度を4.5以下とする。更に脱りん工程に用いる脱炭滓を20mm以下とする。溶銑脱りん工程に使用する以外の脱炭滓は、脱炭工程で炉内に残し、次吹錬に使用する。 (もっと読む)


【課題】 転炉での脱炭精錬とVOD法のような二次精錬設備での真空精錬とを組み合わせて、クロムを9質量%以上含有する高クロム鋼を溶製するにあたり、転炉脱炭精錬末期における窒素のピックを防止し、窒素含有量の低い高クロム鋼を安定して溶製する。
【解決手段】 転炉1での脱炭精錬によって含クロム粗溶鋼8を溶製し、次いで、取鍋内に出鋼された前記含クロム粗溶鋼を二次精錬設備で真空精錬してクロムを9質量%以上含有する高クロム鋼を溶製する高クロム鋼の溶製方法において、転炉からの出鋼時の溶鋼温度が1730℃以上になるように脱炭精錬条件を調整して脱炭精錬を実施し、これにより転炉内に存在するスラグ9の滓化を促進させ、空気からの含クロム粗溶鋼への吸窒を防止する。 (もっと読む)


【課題】 多種多様な鉄スクラップを鉄源として、各種の高品位鋼の製造に使用できる銑鉄を製造する実用的なプロセスを提供する。
【解決手段】 上記課題を解決するための本発明に係る溶銑の製造方法は、鉄スクラップを鉄源として用いて炭素を含有する溶銑をアーク炉にて製造する工程と、該溶銑と高炉にて製造された溶銑とを混合する工程と、混合した後の溶銑に対して脱硫処理を行う工程と、を有することを特徴とする。この場合、脱硫処理後に、溶銑に対して更に脱燐処理を行うこと、アーク炉にて製造される溶銑の炭素濃度は1.5質量%以上であることなどが好ましい。 (もっと読む)


【課題】 高い脱炭酸素効率を維持した状態で、ダスト発生量を削減することのできる精錬用上吹きランスを提供する。
【解決手段】 下端部に酸化性ガスを噴射する噴射ノズル6が設けられた精錬用上吹きランスであって、前記噴射ノズルは、その入口部にスロート7を有するともに、スロートの下流側に末広がり部8を有し、且つ、スロート径Dt及び末広がり部の出口径Deが、ノズル出口部雰囲気圧Pe及びノズル適正膨張圧Poに対して下記の(1)式の関係を満足し、スロート径よりもスロートとの接続部位である末広がり部の径の方が大きく、スロートの中心線qが末広がり部の中心線pに対して上吹きランスの中心軸側に偏心し、且つ、末広がり部の壁面に、制御用ガスを精錬中に供給するための、少なくとも1個の制御用ガス噴射孔を有する。 (De/Dt)2=0.259×(Pe/Po)-5/7×[1-(Pe/Po)2/7]-1/2 …(1) (もっと読む)


41 - 60 / 180