説明

Fターム[4K070EA27]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 数値の特定 (1,431) | 原料組成 (80)

Fターム[4K070EA27]に分類される特許

21 - 40 / 80


【課題】前処理として微粉砕等を行うことなく塊成化が可能であり、スクラップや粒子サイズが7mmを超える粒鉄などを用いる既存の転炉装入原料と同じ設備を使用することができ、また、転炉への十分な量の装入を行うことができる、粒鉄の利用方法を提供する。
【解決手段】粒子サイズが7mm以下である粒鉄(A)20〜80質量%と、製鋼ダスト(B)80〜20質量%と、(ただし、(A)+(B)=100質量%)を混練し塊成化した後、得られた塊成化物を転炉に装入することを特徴とする、粒鉄の利用方法である。 (もっと読む)


【課題】脱りん処理の際にリサイクルスラグとして脱炭スラグを使用しても十分に脱りん処理を行うことができるようにする。
【解決手段】脱炭工程に先だって上底吹き転炉型精錬容器に脱炭工程にて生成した脱炭スラグをリサイクルして溶銑の脱りん処理を行うに際し、処理中に供給する酸素量であって脱珪反応に使用される酸素以外の酸素量と全CaOに対する前記脱炭スラグ中のCaOの割合との関係を式(1)を満たすようにし、投入する造滓剤の粒径を5〜40mmとし、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20にすると共に、底吹き攪拌動力密度εを0.5〜3.5kw/tとしている。 (もっと読む)


【課題】転炉や溶融還元炉、電気炉などの冶金炉から発生する800℃程度以上の高温排ガスから、間接的に顕熱を効率よく回収すると共に、上記吸熱化学反応により高温排ガスを効率よく冷却する方法を提案する。
【解決手段】冶金炉から排出される高温の排ガスを熱源として、触媒存在下あるいは無触媒下において、冶金炉の排ガスダクト内に設置された熱交換チューブ内で、還元剤を水蒸気で改質する水蒸気改質反応、還元剤を炭酸ガスで改質する炭酸ガス改質反応および還元剤を熱分解する熱分解反応のいずれか1以上の吸熱化学反応を起こさせ、その反応生成物を増熱すると共に、上記高温の排ガスを冷却する。 (もっと読む)


【課題】カーボンや非燃焼成分などを排ガス処理設備内に堆積させるようなことなく、効率のよい炭酸ガス改質反応を導いて、排ガスの増熱と共に炭酸ガスの排出削減とを実現することができ、しかも、効果的な排ガスの冷却を行うための方法を提案することにある。
【解決手段】冶金炉から発生する高温の排ガスの顕熱を、煙道に配設されたボイラーにて回収すると共に、この排ガス中に含まれる炭酸ガスと還元剤とを反応させることによる吸熱反応によって、該排ガスのもつ熱エネルギーの増熱を図って排ガス顕熱の回収と、排ガスの冷却を行う。 (もっと読む)


【課題】 溶銑に熱余裕がない場合であっても、転炉での脱炭吹錬末期における大気の転炉内への侵入を確実に防止し、転炉内溶融鉄の窒素濃度の上昇を抑えて低窒素鋼を安定して製造する。
【解決手段】 本発明の低窒素鋼の製造方法は、プラスチックを20〜70質量%含有し、残部を金属または金属酸化物とする成形体を、転炉における溶銑の脱炭吹錬の末期に転炉内に投入し、前記プラスチックから生じるガスと前記脱炭吹錬で生じるガスとの総量を転炉内の溶鋼トンあたり400Nm3/hr以上に確保して大気の転炉内への侵入を防止する。 (もっと読む)


【課題】転炉を用いる製鋼精錬プロセス全体として蛍石等のハロゲン化物やAl源を使用すること無く、低燐鋼を安定的に大量製造すると共に、製鋼精錬プロセスを高能率かつ高効率化する方法を提供する。
【解決手段】溶銑予備脱燐処理された溶銑を上底吹き型転炉で吹錬して低燐溶鋼を製造する際に、前記吹錬後のスラグの質量濃度をAl:3.5%以下、T.Fe:15%以上とし、さらにCaOとSiOとの質量濃度比(CaO%/SiO%)を4.0以上6.0以下とすることによって、該スラグ中のフリーCaO質量濃度を7%以上に調整した転炉スラグを同時に製造し、かつ、溶銑予備脱燐処理をされていない溶銑であってSi質量濃度が0.20%以上のものを上底吹き型転炉で溶銑予備脱燐処理する際に、前記のように製造した転炉スラグを脱燐剤の一部として用いてその脱燐処理を行う。 (もっと読む)


【課題】 2基の転炉を用い、一方の転炉では、炭材などを熱源として大量の鉄スクラップを溶解して高炭素溶融鉄を溶製し、他方の転炉では、該高炭素溶融鉄を酸素吹錬して所定成分の溶鋼を溶製する製鋼方法において、大量の鉄スクラップを鉄源として利用する。
【解決手段】 2基の転炉を用い、一方の転炉では、炉内に鉄スクラップ及び予備処理の施されていない溶銑を装入し、更に、フェロシリコン、黒鉛、コークス及び4.0kg/(高炭素溶融鉄トン)以下の造滓剤を炉内に添加し、炉底から攪拌用ガスを供給しながら、上吹きランスから、精錬の進行に伴って供給流量が低下するようにして酸素ガスを供給し、フェロシリコン、黒鉛及びコークスの燃焼熱により鉄スクラップを溶解して炭素濃度が3質量%以上の高炭素溶融鉄を溶製し、次いで、他方の転炉で前記高炭素溶融鉄を原料として酸素吹錬し、所定の成分の溶鋼を溶製する。 (もっと読む)


【課題】 クロム鉱石や鉄鉱石などを溶融還元炉にて溶融還元して金属溶湯を得るにあたり、溶融還元炉から排出される排ガスを、二酸化炭素の分離装置を用いることなく湿式除塵装置によって除塵するだけで、湿式除塵処理後の排ガスを還元用ガスまたは燃料ガスとして有効利用することのできる溶融還元方法を提供する。
【解決手段】 溶融還元炉1内に鉱石22を燃料及び還元材とともに装入し、酸素ガスを供給することにより鉱石を加熱・溶融して還元して溶湯20を溶製する溶融還元方法において、燃料及び還元材として、固定炭素量が85質量%以上または揮発性成分量が10質量%以下である炭素含有物質と、水素含有物質と、を併用し、炉内に供給される炭素含有物質と水素含有物質とに含有される合計の水素と炭素との原子数の比H/Cが2.0以上20以下の範囲内となるように、炭素含有物質及び水素含有物質の供給量を調整する。 (もっと読む)


【課題】製鋼スラグを溶融改質還元処理する製鋼スラグの処理方法において、還元用炭素源の適切な添加量を規定することにより、製鋼スラグ中の酸化鉄やP等の酸化物の還元反応を促進させるとともに、還元用炭素源のスラグ中への残留を抑制し、緻密で強度の高いスラグを得る。
【解決手段】溶銑が保持されている反応容器に装入された製鋼スラグを加熱手段で加熱しながら、製鋼スラグにSiO含有改質材および還元用炭素源を添加し、製鋼スラグを溶融改質還元処理する製鋼スラグの処理方法において、溶融改質還元処理を通じて製鋼スラグの質量100質量部に対して炭素量が5質量部以上25質量部以下となるように還元用炭素源を添加し、溶融改質還元処理後の製鋼スラグの塩基度が0.7以上となるようにSiO含有改質材を添加するようにした。 (もっと読む)


【課題】製鋼スラグを溶融改質還元処理する製鋼スラグの処理方法及びこの処理により得られる改質スラグにおいて、Alの適切な添加量を規定することにより、製鋼スラグ中の酸化鉄やP等の酸化物還元速度を向上させるとともに、緻密で強度の高い改質された製鋼スラグを得る。
【解決手段】溶銑が保持されている反応容器に装入された製鋼スラグを加熱手段で加熱しながら、SiO含有改質材および還元用炭素源を添加し、製鋼スラグを溶融改質還元処理する製鋼スラグの処理方法において、溶融改質還元処理を通じて製鋼スラグ中のAl濃度が7質量%以上20質量%以下となるように、Al含有物質を添加し、溶融改質還元処理後の製鋼スラグの塩基度が0.7以上となるようにSiO含有改質材を添加するようにした。 (もっと読む)


【課題】製鋼工程の精錬処理時に発生する製鋼スラグの溶融改質処理方法において、スラグ組成等の影響により流動性が低いスラグを溶融改質処理した場合であっても、高品質のスラグを高い歩留りで得る。
【解決手段】SiO含有物質を改質材として、溶融改質処理装置内の製鋼スラグに改質材を溶射することにより、製鋼スラグを溶融改質処理する製鋼スラグの溶融改質処理方法において、溶融改質処理の開始前における(TLL−T)/(TLL−TSL)で表される固相率が0.5以上の製鋼スラグを使用した場合に、製鋼スラグの溶融改質処理開始前の温度Tと製鋼スラグの液相線温度TLLとの関係が、T+150℃≧TLLを満たす条件で溶融改質処理を開始する。 (もっと読む)


【課題】冷鉄源を使用して溶湯を製造する際に、効率良く冷鉄源を溶解して電力使用量の削減と操業時間の短縮を可能とするアーク炉の操業方法を提供すること。
【解決手段】溶解室2と、溶解室2の上部に直結するシャフト型の予熱室3とを具備し、溶解室2で発生する排ガスを予熱室3に導入して予熱室3内の冷鉄源15を予熱するアーク炉1を用い、冷鉄源15が予熱室3と溶解室2とに存在する状態を保つように冷鉄源15を予熱室3へ供給しながら、溶解室2でアーク加熱にて冷鉄源15を溶解する際に、アーク炉1から出湯する溶湯の炭素濃度を1mass%以上とすることを特徴とするアーク炉の操業方法を用いる。溶解室2内に炭材を添加すること、溶解室2内に添加する炭材がバイオマス由来であることが好ましい。 (もっと読む)


【課題】粗脱炭で生成されるスラグの熱を電気炉での溶解に有効利用することができ、またスラグ中に含まれるクロム分を溶銑の成分として利用することができるステンレス鋼の製造方法を提供する。
【解決手段】ステンレス鋼の溶銑2を転炉4で酸素吹精して粗脱炭し、粗脱炭で生成されるスラグ10を容器11に排滓する。排滓されたスラグ10をホットチャージ状態で電気炉に装入し、装入されたスラグ10をステンレス製鋼用の原料とともに溶解する。当該原料の組成を、FeCr:10重量%以上、Si:0.5〜1.5重量%とし、FeCr中のSi含有量を3重量%以上とすることが好ましい。 (もっと読む)


【課題】 燐を含有する製鋼スラグ中の燐を回収・濃化して、燐含有量の高い燐酸資源原料を安価に且つ効率的に製造する方法を提供する。
【解決手段】 燐を含有する製鋼スラグを、炭素、珪素、アルミニウムのうちの1種以上を含有する還元剤を用いて還元することにより、前記製鋼スラグ中の鉄酸化物及び燐酸化物が還元されて得られる、燐を0.5質量%以上含有する燐含有溶銑に対し、供給する酸素源の40体積%以上の酸素源を酸素ガスとして上吹きランスを介して溶銑に吹き付けて供給するとともに、供給する石灰源の純CaO換算の40質量%以上を前記上吹きランスを介して搬送用ガスとともに溶銑に吹き付けて供給し、石灰源の滓化促進剤としてフッ素源を使用することなく、酸素源及び石灰源を供給して脱燐処理を施し、生成される脱燐スラグ中の燐酸濃度を10質量%以上に濃縮させ、該脱燐スラグを回収して燐酸資源原料とする。 (もっと読む)


【課題】初期昇温後に転炉型精錬容器1に設けた耐火物5の剥離を確実に防止することができる。
【解決手段】内容積が200m3以上となる転炉型精錬容器1への耐火物5の施工後に初期昇温を行う転炉型精錬容器1の初期昇温方法において、転炉型精錬容器1の初期昇温を行うに際し、まず、転炉型精錬容器1の底部にコークス10を置く載置台11を設置する。底部と載置台11との間の空間部分Sを転炉型精錬容器1の全体の内容積に対して2%以上に設定する。転炉型精錬容器1に酸素を吹き込むランスの酸素流量を0.2〜1.1Nm3/min・m3の範囲とする。ランスの底部からの高さを4.1〜7.3mの範囲で上下させることで酸素によりコークス10を燃焼させる。コークス10の燃焼による発生する発熱量を1.3×10-2t−0.036MJ/分・m3以上1.1×10-2t+2.4MJ/分・m3以下にする。 (もっと読む)


【課題】スラグ中での溶解速度が高く、かつハンドリング性の良好なスラグ調整剤を提供すること。
【解決手段】スラグ調整剤は、酸化物換算で20質量%以上、98%質量%以下のMgOを主成分とし、残部がCaO、SiO、カルシウム炭酸化物、及びカルシウム水酸化物の少なくともいずれか1種以上、並びに不可避的不純物からなる原料に、外掛けで0.1質量%以上、2.0質量%以下の発泡剤、及び、外掛けで0.01質量%以上、0.2質量%以下の有機繊維の少なくともいずれか一方を添加し、さらにバインダーを加えて混練、成形、及び乾燥してなる。 (もっと読む)


【課題】本発明は、冷鉄源比率を従来より高くしても、転炉の内張り耐火物の溶損が少なく、炉体寿命を延長できる転炉スラグのMgO濃度調整材及転炉製鋼法を提供することを目的としている。
【解決手段】MgO−C系耐火物を内張りした転炉で、冷鉄源比率を装入鉄源中の10質量%以上として、酸素吹錬で溶鋼を溶製する技術の改良を行った。それは、粒径3mm以下のMgO含有物質を60質量%以上、バインダーとしてのタール・ピッチを20〜40質量%含有し、かつ形状をブリケット状に成型加工してなる転炉スラグのMgO濃度調整材を使用するものである。この場合、前記MgO含有物質が軽焼マグネシア、軽焼ドロマイト及び炭酸マグネシウムから選ばれた1種又は2種以上であるのが好ましい。 (もっと読む)


【課題】蛍石に代表されるハロゲン化物を使用しない転炉型溶銑脱燐処理において、高能率で低燐濃度の溶銑を製造することと、転炉炉内の地金、スラグの付着量を低減することを両立する溶銑の脱燐方法を提供する。
【解決手段】転炉に収容された溶銑に酸素ガスを12分間以内供給し、蛍石に代表されるハロゲン化物を用いることなく、溶銑を脱燐処理する。この際、粒径が150μm以下の粉状の生石灰5kg/溶銑トン以上を、酸素ガスとともに、テーパーノズルを中心ノズルを除いて4以上12以下備える上吹きランスを介して、溶銑の表面に吹き付けて脱燐を行う。 (もっと読む)


【課題】炉に投入した際に速やかに溶解して内張り耐火物の溶損を効果的に抑制することができ、且つ投入した際に炉口からの急激なガス吹き出しを生じないスラグ成分調整剤を提供する。
【解決手段】Mg含有原料を主材とする粉粒状原料を成形し、固化させた成形体であって、ガス発生温度が400℃以下であるガス発生物質(A)とガス発生温度が600℃以上であるガス発生物質(B)を含有する。炉内温度でガスを発生させるガス発生物質を含むため溶解性が高く、また、炉に投入した際に、ガス発生物質(A)からのガス発生とガス発生物質(B)からのガス発生が時間差をもって生じるため、ガスの発生が穏やかになり、炉口からの急激なガス吹き出しを防止することができる。 (もっと読む)


【課題】炉に投入したスラグ成分調整剤を速やかに溶解させ、内張り耐火物の溶損を効果的に抑制することができ、且つ炉口からの急激なガス吹き出しを防止することができる溶融金属の精錬方法を提供する。
【解決手段】Mg含有原料を主材とする粉粒状原料を成形し、固化させた成形体であって、ガス発生温度が400℃以下であるガス発生物質Aとガス発生温度が600℃以上であるガス発生物質Bを含有するスラグ成分調整剤を、精錬容器に投入して溶融金属の精錬を行う。スラグ成分調整剤は、炉内温度でガスを発生させるガス発生物質を含むため溶解性が高く、また、炉に投入した際に、ガス発生物質Aからのガス発生とガス発生物質Bからのガス発生が時間差をもって生じるため、ガスの発生が穏やかになり、炉口からの急激なガス吹き出しを防止することができる。 (もっと読む)


21 - 40 / 80