説明

Fターム[5E040CA01]の内容

硬質磁性材料 (8,571) | 磁気特性・用途 (1,594) | 硬質(磁石用) (997)

Fターム[5E040CA01]に分類される特許

201 - 220 / 997


【課題】高いBr、HcJ及びHk/HcJを有する永久磁石を得ることが出来るフェライト磁性材料、ならびにフェライト磁石を提供する。
【解決手段】六方晶構造を有するフェライト相からなる主相を有するフェライト磁性材料であって、Ca1−w−x−ySrBaFeで表される金属元素の組成を有し、0.25<w<0.5、0.01<x<0.35、0.0001<y<0.013、y<x、8.7<z<9.9、1.0<w/m<2.1、0.017<m/z<0.055を満たし、副成分として少なくともSi成分を含み、前記フェライト磁性材料中の前記Si成分のSiO換算での含有量y1質量%をY軸に表わし、前記zとmの合計量x1をX軸に表わしたときに、x1とy1の関係が、X−Y座標における所定の4つの点で囲まれる範囲内にあるフェライト磁性材料、ならびにそのフェライト磁性材料からなるフェライト磁石。 (もっと読む)


【課題】高い磁気異方性を有し、優れた磁気特性を有する異方性交換スプリング磁石を提供する。
【解決手段】R14B型金属間化合物(RはNdを含む希土類元素を示し、TはFe又はCoからなる元素を示す。)からなるR−T−B相12と、α−Fe、α−Fe固溶体、α−Co、α−Co固溶体、及びα’−FeCo金属間化合物から選ばれる少なくとも一つからなるFe系相14と、銀、銀を含む固溶体、銀を含む金属間化合物、及び銀を含む非晶質から選ばれる少なくとも一つからなる銀リッチ相16と、を含有する異方性交換スプリング磁石10。 (もっと読む)


【課題】磁気性能を向上させることが可能な永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末をジェットミル粉砕分級システム32へと搬送し、単磁区粒子径(例えば0.2μm〜1.2μm)の粒径のものを分級して回収し、回収された磁石粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石の粒子表面に対して均一に有機金属化合物を付着させた後に、成形及び焼結を行うことによって永久磁石を製造する。 (もっと読む)


【課題】優れた安定性と高耐食性及び水素バリアー性を有する希土類永久磁石の製造方法を提供する。
【解決手段】粉砕された磁石粉末に対してM−(OR)(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥した磁石粉末を真空中又は不活性化ガス雰囲気下において600℃以上900℃未満で0.01分以上1時間未満保持することにより加熱処理を行う。更に、加熱処理された磁石粉末を成形し、800℃〜1180℃で焼成を行い、製品形状(例えば直方体形状)に切断し、また、研磨して表面の加工仕上げを行った後に、焼結体72に対して熱処理を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】保磁力を向上させ、磁石の使用温度の限界を向上させ、耐熱性の向上を図ることを可能とした高保磁力異方性磁石及びその製造方法を提供する。
【解決手段】磁石原料をHDDR法により微粉砕したHDDR粉末41に対して、M−(OR)(式中、MはDy、Tb、Hoの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥した磁石粉末を真空中又は不活性化ガス雰囲気下において600℃以上900℃未満で0.01分以上1時間未満保持することにより加熱処理を行う。更に、加熱処理された磁石粉末を成形し、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】粉砕後の磁石粉末を加熱することによって、磁石粒子の表面を再生し、磁気性能を向上させた永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末31を、M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物とともに溶媒中でビーズミルにより粉砕し、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥した磁石粉末43を低酸素雰囲気下において600℃〜1000℃で数時間保持することにより、磁石粉末43を構成する各磁石粒子の再生処理を行う。更に、再生された磁石粉末44を成形し、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】 アルミニウムまたはその合金の蒸着被膜が優れた密着性をもって表面に形成されてなる希土類系永久磁石の製造方法を提供すること。
【解決手段】 蒸着槽内において抵抗加熱方式によって加熱された溶融蒸発部にワイヤー状のアルミニウムまたはその合金の蒸着材料を連続供給しながら蒸発させることで、希土類系永久磁石の表面にアルミニウムまたはその合金の蒸着被膜を形成する際、蒸着処理を開始してから終了するまでの間の磁石の温度上昇勾配を10℃/分以下に制御して蒸着処理を行うことを特徴とする。 (もっと読む)


【課題】配向度を向上させ、磁気特性に優れたフェライト焼結磁石の製造方法を提供する。
【解決手段】磁性粉末に表面処理剤を付着させ、前記磁性粉末を、ポリオレフィン系樹脂を含むバインダ樹脂とともに混練した混練物を得る工程と、前記混練物を溶融させて磁場が印加された金型により成形して成形体を得る工程と、前記成形体を焼成する工程と、を有し、前記表面処理剤は分子内に、前記磁性粉末表面との反応部位と、前記バインダ樹脂との反応部位及び/又は相互作用部位と、を有する物質であって、前記表面処理剤の磁性粉末表面との反応部位の末端に、水酸基、アルコキシ基、カルボキシル基又はこれらの誘導体、又はこれらの塩を有しており、前記表面処理剤の前記バインダ樹脂との反応部位及び/又は相互作用部位の末端に、アルキル基、アルケニル基、メタクリロキシ基又はアクリロキシ基を有している。 (もっと読む)


【課題】磁性材料を、低コストで、かつ、作業性および生産性よく製造することのできるアモルファス金属、および、そのアモルファス金属を用いて得られる磁性材料を提供すること。
【解決手段】希土類元素、鉄およびホウ素を含有するアモルファス金属において、希土類元素の原子割合を、22〜44原子%の範囲とし、ホウ素の原子割合を、6〜28原子%の範囲とする。また、このようなアモルファス金属を、その結晶化温度より30℃低い温度以上の温度で、または、アモルファス金属がガラス遷移現象を示す場合は、ガラス遷移温度以上の温度で、熱処理することにより、磁性材料を得る。 (もっと読む)


【課題】微小範囲の粒径の磁石粉末を、高い歩留りで得ることを可能となり、その結果、磁気性能及び工業生産性を向上させることが可能な永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末をジェットミル粉砕分級システム32へと搬送し、ヘリウム雰囲気下でジェットミル粉砕を行うとともに、ジェットミル34とサイクロン分級機35との間で磁石粒子を循環させて繰り返し粉砕を行い、所定の範囲(例えば0.2μm〜1.2μm)の粒径のものを分級して回収し、成形後に800℃〜1180℃で焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】繰り返し加わる衝撃に対しては十分な耐衝撃性を有すると共に、優れた耐食性を有する希土類永久磁石及びそれを用いたモータを提供する。
【解決手段】希土類焼結磁石は、磁石素体11と、前記磁石素体の表面に形成される被覆層とを有し、前記被覆層が、前記磁石素体に対して垂直方向に±10°の範囲内で成長した柱状結晶13と、前記柱状結晶から前記柱状結晶とは異なる方向に成長した双晶14とを含み、前記柱状結晶の存在比率が、前記磁石素体の表面に形成される前記被覆層に対して20%以上80%以下である。 (もっと読む)


【課題】要求される種々の磁石特性に応じた各原料の配合比で製造されるR−Fe−B系永久磁石を提供する。
【解決手段】粉砕された磁石粉末に対してCo−(OR)(式中、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】還元拡散法を利用し希土類−鉄合金粉末を均一に窒化することで、磁気特性を向上させる希土類−鉄−窒素系磁石粉末の製造方法、及び得られる希土類−鉄−窒素系磁石粉末を提供。
【解決手段】希土類酸化物粉末、鉄粉末、及び該希土類酸化物を還元するための還元剤を混合し、この混合物を還元拡散法により非酸化性雰囲気中で加熱焼成して希土類−鉄母合金を含む還元拡散反応生成物を得て、次に、該還元拡散反応生成物を湿式処理装置に装入し、水洗、デカンテーション、酸洗して崩壊させるとともに還元拡散反応生成物から還元剤を除去し、引き続き乾燥した後、得られた希土類−鉄母合金粉末を窒化処理して下記の一般式(1)で表される希土類−鉄−窒素系磁石粉末を得る製造方法において、前記還元拡散反応生成物の湿式処理から乾燥工程までを一貫して非酸化性雰囲気中で行うことを特徴とする希土類−鉄−窒素系磁石粉末を得る製造方法などにより提供。
Fe(100−a−b) ・・・(1)
(式(1)中、Rは1種類または2種以上の希土類元素であり、またa、bは原子%で、4≦a≦18、10≦b≦17を満たす。) (もっと読む)


【課題】成形時のスラリーの分散性を十分に向上でき、高い配向度を有する磁石が得られる磁石の製造装置及び磁石の製造方法を提供する。
【解決手段】粉砕された磁石粉末にM−(OR)x(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む溶媒とを混合したスラリー50を希土類磁石の製造装置21において生成し、その後、成形機24においてキャビティに注入したスラリー50に対して磁場を印加した状態で圧力を加えて成形し、その後に有機溶媒を揮発させて成形体を得る。続いて、成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。続いて、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】粉砕性を向上すると共に、磁気特性の向上を図った希土類焼結磁石の製造方法及び希土類焼結磁石を提供する。
【解決手段】本発明に係る希土類焼結磁石の製造方法は、R214B(Rは1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)化合物を含む主相と、Rを多く含む粒界相とを有する希土類焼結磁石を製造するにあたり、R214B化合物を含む第1合金の合金粉末と、HR214B化合物(HRは1種類以上の重希土類元素を表す)を含み、HRの含有量が25.0質量%以上32.5質量%以下であり、Bの含有量が0.6質量%以上1.4質量%以下である第2合金の合金粉末とを混合し、焼結して得られ、Rが25.0質量%以上32.5質量%未満であり、Bが0.5質量%以上1.5質量%以下の組成を有する。 (もっと読む)


【課題】希少資源である重希土類元素を使用せずに磁性材料の特性を改善すること。
【解決手段】磁粉へのフッ素の導入および結晶粒内での結晶方位を制御することで保磁力や残留磁束密度などの磁気特性を確保した磁性材料を作製できる。その結果、重希土類元素の資源問題を解決でき種々の回転機やハードディスクのボイスコイルモータを含む高エネルギー積を必要とする磁気回路に適用できる。 (もっと読む)


【課題】耐食性が向上すると共に、フラックスの低下が抑制された希土類焼結磁石の製造方法及び希土類焼結磁石を提供する。
【解決手段】本実施形態に係る希土類焼結磁石の製造方法は、R214B化合物を含む主相と、R214B化合物よりNdが多く、CoとCuとを含む粒界相とを有する希土類焼結磁石を製造するにあたり、R12Fe14B及び不可避不純物を含み、Co及びCuを含まない主相系合金の粉末と、R2とFeとCoとCuとを含み、R2の含有量が25質量%以上50質量%以下であり、Coの含有量が5質量%以上50質量%以下であり、Cuの含有量が0.3質量%以上10質量%以下である粒界相系合金の粉末とを混合し、得られた混合物を成形し、焼結して得られ、最終組成としてCoを0.6質量%以上3.0質量%以下、Cuを0.05質量%以上0.5質量%以下含む。 (もっと読む)


【課題】残留磁束密度及び保磁力に優れた焼結磁石を提供すること。
【解決手段】本発明の焼結磁石は、コア4と、コア4を被覆するシェル6と、を有するR−T−B系希土類磁石の結晶粒子2群を備え、シェル6における重希土類元素の質量の比率が、コア4における重希土類元素の質量の比率よりも高く、結晶粒子2においてシェル6が最も厚い部分が、粒界三重点1に面している。 (もっと読む)


【課題】
残留磁束密度及び保磁力、特に保磁力に優れるとともに、角型比が高い希土類焼結磁石、及びそれを用いたモーター及び自動車を提供すること。
【解決手段】
コア4と、前記コア4を被覆するシェル6と、を有するR−T−B系希土類磁石の主相粒子2群を備え、Rは重希土類元素及び軽希土類元素を含み、主相粒子2群における2粒子界面に重希土類Cu化合物及び軽希土類Cu化合物が存在する希土類焼結磁石10であって、希土類焼結磁石10の表面から深さ0.3mmの位置の2粒子界面における軽希土類Cu化合物に対する重希土類化合物の質量比が、希土類焼結磁石の表面から深さ1.5mmの位置の2粒子界面における軽希土類Cu化合物に対する重希土類化合物の質量比の1倍より大きく5倍以下である希土類焼結磁石。 (もっと読む)


【課題】HDDR粉末を用いたバルク磁石を従来よりも高い効率で製造できる希土類磁石の製造方法を提供する。
【解決手段】本発明の希土類磁石の製造方法は、HDDR粉末を成形して圧粉体を作製する工程と、圧粉体を5℃/秒以上の昇温速度で500℃〜900℃の範囲内の所定の温度に加熱する工程と、圧粉体が上記所定の温度にある間に、加圧方向を正としたときの圧粉体の加圧方向における寸法変化の時間微分の値が−0.12〜0.0mm/分以下の値である期間が90秒未満となるように圧粉体を20〜3000MPaの圧力で加圧することによって密度7.52g/cm3以上の密度を有するバルク体を得る工程と、バルク体を所定の温度から400℃未満の温度に冷却する工程と、バルク体を加圧することなく、真空または不活性雰囲気下で500℃以上900℃以下の第1温度で1分以上60分未満の時間にわたって熱処理を行なう工程とを包含する。 (もっと読む)


201 - 220 / 997