説明

希土類永久磁石及びそれを用いたモータ

【課題】繰り返し加わる衝撃に対しては十分な耐衝撃性を有すると共に、優れた耐食性を有する希土類永久磁石及びそれを用いたモータを提供する。
【解決手段】希土類焼結磁石は、磁石素体11と、前記磁石素体の表面に形成される被覆層とを有し、前記被覆層が、前記磁石素体に対して垂直方向に±10°の範囲内で成長した柱状結晶13と、前記柱状結晶から前記柱状結晶とは異なる方向に成長した双晶14とを含み、前記柱状結晶の存在比率が、前記磁石素体の表面に形成される前記被覆層に対して20%以上80%以下である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、希土類永久磁石及びそれを用いたモータに関する。
【背景技術】
【0002】
R−Fe−B系(Rは希土類元素を表す)などの希土類永久磁石は、高性能な永久磁石として、電気自動車やハイブリッドカーなど特に高性能が要求されるモータなどに使用されている。この希土類永久磁石は、主成分として酸化され易い希土類元素と鉄とを含有するため、使用される環境条件によって、腐食などが発生し易い。このため、希土類永久磁石の表面の保護を目的として希土類永久磁石には被覆層が設けられる。被覆層は、希土類永久磁石の用途や求められる特性に応じて、めっき膜や樹脂膜などで形成される。
【0003】
例えば、磁石素体の表面に、該磁石素体に略平行に成長した柱状結晶を有するNiめっき層を形成して磁石素体を被覆し、耐食性を改善したR−TM−B系永久磁石(Rは、Yを含む希土類元素の少なくとも一種を示し、TMは、Feを主体とする遷移金属を示す。)が開示されている(特許文献1参照)。このNiめっき層は、磁石素体に略平行に成長した柱状結晶を有することで、Niめっき層の形成時にNiめっき層に形成されるピンホールの発生を防ぐようにしている。これにより、Niめっき層から水分が浸入するのを防ぎ、Niめっき層に被覆された磁石素材の腐食を予防し、耐食性を改善している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平7−106109号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
希土類永久磁石は様々な用途に用いられており、磁石素体に形成される被覆層にとっても、用途に応じて様々な特性が要求される。例えば、モータ等の内部に希土類永久磁石が露出する状態で用いられる場合、砂塵、煤塵がモータ等の内部に浸入した際には、モータ等に用いられる希土類永久磁石は、モータの回転運動に伴い、希土類永久磁石に連続的な衝撃が繰り返し加わることとなる。このため、希土類永久磁石の表面は、繰り返し加わる衝撃に対して耐衝撃性(容易に割れや欠けを生じないこと)を有し、かつ優れた耐食性(容易に腐食することがないこと)を有することが求められる。
【0006】
特許文献1に記載のNiめっき層は、Niめっき層の形成時にNiめっき層に形成されるピンホールの発生を防いで、磁石素体まで水分が到達するのを防ぐようにしている。しかしながら、特許文献1に記載のNiめっき層は、繰り返し加わる衝撃に対しては十分な耐衝撃性を有しておらず、煤塵等により加わった傷に起因して生じる腐食については考慮されていない、という問題があった。
【0007】
また、特許文献1に記載のNiめっき層は、磁石素体に略平行に成長した柱状結晶を有するため、結晶粒界を介して拡散した腐食性不純物が、Niめっき/磁石素体界面に到達し腐食進行した場合、Niめっき/磁石素体界面でNiめっき層が剥がれ易い、という問題があった。
【0008】
本発明は、上記に鑑みてなされたものであって、繰り返し加わる衝撃に対しては十分な耐衝撃性を有すると共に、優れた耐食性を有する希土類永久磁石及びそれを用いたモータを提供することを目的とする。
【課題を解決するための手段】
【0009】
上述した課題を解決し、目的を達成するために、本発明に係る希土類焼結磁石は、磁石素体と、前記磁石素体の表面に形成される被覆層とを有し、前記被覆層が、前記磁石素体の表面の接線に対して垂直方向に±10°の範囲内で成長した柱状結晶と、前記柱状結晶から前記柱状結晶とは異なる方向に成長した双晶とを含み、前記磁石素体の表面に形成される前記被覆層に対する前記柱状結晶の存在比率が、20%以上80%以下であることを特徴とする。なお、柱状結晶の存在比率とは、被覆層における柱状結晶の体積比をいうが、ここでは、磁石素体に対する被覆層の成膜方向の断面積における柱状結晶の面積比をいう。
【0010】
本発明の希土類焼結磁石は、磁石素体に対して垂直方向に±10°の範囲内で成長した柱状結晶を有している。柱状結晶は磁石素体に対して略垂直方向に成長しているため、被覆層の厚さ方向に繰り返し加わる衝撃に対する耐衝撃性を有する。被覆層が、柱状結晶のみである場合、磁石素体に対して被覆層の厚さ方向とは異なる方向から加わる衝撃に対して被覆層は十分な強度を備えることはできない。本発明は、柱状結晶の他に、柱状結晶から柱状結晶とは異なる方向に成長した双晶を有している。双晶とは、鏡像関係など対称性を有する方向に成長した結晶をいう。このため、磁石素体に対して被覆層の厚さ方向とは異なる方向から加わる衝撃に対しても強度を有し、耐衝撃性を有する。また、磁石素体の表面全体の面積に対する柱状結晶の存在比率は、20%以上80%以下であるため、被覆層の厚さ方向と被覆層の厚さ方向とは異なる方向との両方から加わる衝撃に対して同時に安定した耐衝撃性を有する。また、被覆層は柱状結晶以外に双晶を含むため、例えば、結晶粒界からの不純物の拡散を抑制したり、結晶粒界に起因する電気化学的な欠陥を抑制することで、被覆層自体あるいは被覆層下の磁石素体の腐食が進行することを抑制することができる。また、被覆層は柱状結晶の他に双晶も含むことで、被覆層内に形成される結晶が成長する方向は複雑に形成されるため、被覆層表面に傷が生じても傷が被覆層の内部にまで進行することを抑制することができるので、被覆層に深い傷が形成されるのを抑制することができる。よって、本発明の希土類焼結磁石は、繰り返し加わる衝撃に対しては十分な耐衝撃性を有すると共に、優れた耐食性を有する。このため、本発明の希土類焼結磁石は、繰り返し衝撃を受け易い、モータ用の永久磁石として好適に用いることができる。
【0011】
また、本発明では、前記双晶が、前記磁石素体の表面の接線に対して30°と60°と120°と150°との各々の方向から±5°の範囲内に結晶方向をもつ結晶であることが好ましい。双晶は柱状結晶から上記範囲内の結晶方向を持つ複数の結晶であるため、磁石素体に対して被覆層の厚さ方向とは異なる方向から加わる衝撃に対しても更に高い強度を有し、耐衝撃性を有することができる。
【0012】
また、本発明では、前記被覆層における前記柱状結晶の存在比率を1としたときの前記柱状結晶の存在比率に対する前記双晶の存在比率の割合が、0.1以上0.6以下であることが好ましい。柱状結晶の存在比率に対する双晶の存在比率とは、被覆層における柱状結晶に対する双晶の体積比をいうが、ここでは、磁石素体に対する被覆層の成膜方向の断面積における柱状結晶に対する双晶の面積比をいう。柱状結晶は被覆層を主に形成する主結晶として存在し、双晶は柱状結晶から成長する結晶として被覆層内に形成されている。被覆層を構成する結晶として双晶が多すぎると、被覆層の厚さ方向に繰り返し加わる衝撃に対して十分な耐衝撃性を有することはできなくなる。柱状結晶の存在比率に対する双晶の存在比率の割合を上記範囲内とすることで、被覆層の厚さ方向に繰り返し加わる衝撃に対して十分な耐衝撃性を有しつつ、被覆層の厚さ方向とは異なる方向から加わる衝撃に対しても十分な耐衝撃性を有することができる。
【0013】
また、本発明では、前記被覆層における前記柱状結晶と前記双晶との存在比率の合計が、45%以上90%以下であることが好ましい。柱状結晶と双晶との存在比率とは、被覆層における柱状結晶と双晶との体積比をいうが、ここでは、磁石素体に対する被覆層の成膜方向の断面積における柱状結晶と双晶との面積比をいう。柱状結晶以外の結晶との関係で双晶が多くなると、被覆層に欠陥が生じやすくなり、不純物、異常粒成長によって被覆層の剥離やピンホールが発生しやすくなる。柱状結晶以外の結晶に対する双晶の存在比率を上記範囲内とすることで、被覆層に欠陥が生じるのを抑制することができると共に、不純物、異常粒成長によって被覆層の剥離やピンホールが発生するのを抑制することができる。
【0014】
また、本発明では、前記被覆層が、金属層であることが好ましい。被覆層を金属層とすることで、磁石素体に容易に被覆層を形成することができる。
【0015】
また、本発明では、前記被覆層が、電気めっきで形成されることが好ましい。被覆層を電気めっきで形成することで、磁石素体に容易に被覆層を形成することができる。電気めっきは蒸着などにより被覆層を形成する場合に比べて低コスト、かつ簡便に再現性を有して形成することができる。
【0016】
また、本発明では、前記被覆層が、Niを含むNiめっき膜であることが好ましい。Niは強度が高く、耐腐食性を有するため、強度が高く、耐腐食性に優れた被覆層を形成することできる。
【0017】
また、本発明に係るモータは、上記の希土類永久磁石を含むことを特徴とする。本発明のモータは、上記特徴を有する希土類永久磁石を備えるため、砂塵等がある過酷な環境下で使用しても、高い出力で長時間安定して継続して運転することができる。
【発明の効果】
【0018】
本発明によれば、繰り返し加わる衝撃に対して耐衝撃性を有すると共に、優れた耐食性を有する希土類永久磁石を提供することができる。また、上記希土類焼結磁石をモータに用いることにより、モータ性能を向上させることができる。
【図面の簡単な説明】
【0019】
【図1】図1は、本発明の好適な一実施形態である希土類永久磁石の模式断面図である。
【図2】図2は、被覆層の結晶構造を模式的に示す説明図である。
【図3】図3は、双晶の成長方向を簡略に示す模式図である。
【図4】図4は、本実施形態に係る被覆層を備える希土類永久磁石を適用したSPMモータの内部構造の一例を示す説明図である。
【図5】図5は、本実施形態に係る被覆層を備える希土類永久磁石を適用したIPMモータの内部構造の一例を示す説明図である。
【発明を実施するための形態】
【0020】
以下、本発明に係る希土類永久磁石の実施の形態(以下、実施形態という)及び実施例を図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための実施形態及び実施例により本発明が限定されるものではない。また、下記の実施形態及び実施例で開示する構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記の実施形態及び実施例で開示した構成要素は適宜組み合わせても良いし、適宜選択して用いてもよい。
【0021】
図1は、本発明の好適な一実施形態である希土類永久磁石の模式断面図である。図1に示すように、希土類永久磁石10は、磁石素体11と該磁石素体11の表面全体を覆う被覆層12とを備える。本実施形態では、希土類永久磁石10が高い磁気特性を有する観点から、磁石素体11は希土類焼結磁石を用いている。
【0022】
磁石素体11はR−T−B系合金からなる希土類焼結磁石である。Rは、1種以上の希土類元素を表す。希土類元素とは、長周期型周期表の第3族に属するScとYとランタノイド元素とのことをいう。ランタノイド元素は、例えば、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を含む。希土類元素は、軽希土類及び重希土類に分類され、重希土類元素とは、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luをいい、軽希土類元素はそれ以外の希土類元素である。製造コスト及び磁気特性の観点から、RはNdを含むものであることが好ましい。
【0023】
Tは、Fe又はFe及びCoを含む1種以上の遷移金属元素を示すものである。Tは、Fe単独であってもよく、Feの一部がCoで置換されていてもよい。Feの一部をCoに置換する場合、磁気特性を低下させることなく温度特性を向上させることができる。また、Coの含有量は、Feの含有量の20質量%以下に抑えることが望ましい。これは、Coの含有量がFeの含有量の20質量%より大きくなるようにFeの一部をCoに置換すると、磁気特性を低下させる虞がある。また、磁石素体11が高価となってしまうからである。Tは、Fe、Co以外に、例えば、Ti、V、Cr、Mn、Ni、Cu、Zr、Nb、Mo、Hf、Ta、Wなどの遷移元素の少なくとも1種の元素を更に含んでいてもよい。
【0024】
本実施形態に係る希土類永久磁石の主相には、結晶粒の組成がR214Bという組成式で表されるR214B相とR214B相よりRが多いRリッチ相が含まれる。粒界相には、Rリッチ相が含まれる。粒界相は、Rリッチ相の他に、ホウ素(B)原子の配合割合が高いBリッチ相が含まれていてもよい。焼結体の結晶粒の平均粒径は、通常1μmから30μm程度である。
【0025】
磁石素体11は、優れた磁石特性が得られるという観点から、R−T−B系合金からなる希土類焼結磁石を用いているが、本実施形態はこれに限定されるものではなく、他の組成を有する合金を用いてもよい。
【0026】
被覆層12は、めっきや気相法により形成した金属を主成分として含む金属層、塗布法や気相法により形成した無機化合物を主成分として含む無機層等からなるものである。これらの中では、めっきや気相法により形成した金属層が好ましい。被覆層12を金属層とすることで、磁石素体11に容易に被覆層12として形成することができる。また、被覆層12はめっきにより形成しためっき膜とするのがより好ましい。めっき膜は、Niめっき膜、Ni−B、Ni−P、Cu、Zn、Cr、Sn、Ag、Au、Alの何れか一つ以上を主成分として含む層で形成される金属めっき膜が好ましい。金属めっき膜の中でも特に被覆層12は、Niを含むNiめっき膜であることが好ましい。Niは強度が高く、耐腐食性を有するため、被覆層12をNiめっき膜とすることで、強度が高く、耐腐食性に優れた被覆層12を形成することできる。これらのめっき膜は、例えば、電気めっき法や無電解めっき法によって形成される。めっき膜は電気めっき法により形成するのが好ましい。被覆層12を電気めっきで形成することで、磁石素体11に容易に被覆層12を形成することができる。また。電気めっきは蒸着などにより被覆層12を形成する場合に比べて低コスト、かつ簡便に再現性を有して形成することができる。
【0027】
図2は、被覆層12の結晶構造を模式的に示す説明図である。図2に示すように、被覆層12は、柱状結晶13と双晶14とを含む。柱状結晶13は、磁石素体11に対して略垂直方向に成長し、磁石素体11の垂直方向に±10°の範囲内で成長している。双晶14は、柱状結晶13から柱状結晶13とは異なる方向に成長している。柱状結晶13は磁石素体11に対して略垂直方向に成長しているため、被覆層12の厚さ方向に繰り返し加わる衝撃に対する耐衝撃性を有する。被覆層12が、柱状結晶13のみである場合、磁石素体11に対して被覆層12の厚さ方向とは異なる方向から加わる衝撃に対して被覆層12は十分な強度を備えることはできない。被覆層12は、柱状結晶13の他に柱状結晶13とは異なる方向に成長した双晶14を有している。図3は、双晶14の成長方向を簡略に示す模式図である。図3に示すように、双晶14は、柱状結晶13から双晶14が成長する始点14aと磁石素体11の水平方向とにより形成される角度θを有する方向に成長している。このため、磁石素体11に対して被覆層12の厚さ方向とは異なる方向から加わる衝撃に対しても強度を有し、耐衝撃性を有する。また、被覆層12は双晶14を含むため、結晶粒界から水分は被覆層12内に浸入し難くなり、結晶粒界を介して腐食が進行することを抑制することができる。また、被覆層12は柱状結晶13の他に、双晶14を含むことで、被覆層12内に形成される結晶が成長する方向は複雑に形成されているため、被覆層12の表面に傷がついても傷が被覆層12内部にまで進行することを抑制することができる。このため、被覆層12に深い傷が形成されるのを抑制することができる。
【0028】
磁石素体11の表面全体に形成される被覆層12の面積に対する柱状結晶13の存在比率は、20%以上80%以下とし、より好ましくは、30%以上50%以下であり、更に好ましくは35%以上45%以下である。柱状結晶13の存在比率とは、被覆層12における柱状結晶13の体積比をいうが、ここでは、磁石素体11に対する被覆層12の成膜方向の断面積における柱状結晶13の面積比をいう。柱状結晶13の存在比率が被覆層12の面積に対して20%を下回ると、被覆層12の厚さ方向に加わる衝撃に対して十分な耐衝撃性を有することができないからである。また、柱状結晶13の存在比率が被覆層12の面積に対して80%を超えると、被覆層12の厚さ方向とは異なる方向から加わる衝撃に対して十分な耐衝撃性を有することができないからである。被覆層12の面積に対する柱状結晶13の存在比率を上記範囲内とすることで、被覆層12の厚さ方向と被覆層12の厚さ方向とは異なる方向との両方から加わる衝撃に対して同時に安定した耐衝撃性を有することができる。
【0029】
双晶14は、柱状結晶13から磁石素体11に対して30°と60°と120°と150°との各々の方向から±5°の範囲内に結晶方向の角度θ(図3参照)を有する結晶であることが好ましい。即ち、双晶14は、磁石素体11に対して25°以上35°以下の範囲内に結晶方向をもつ結晶と、磁石素体11に対して55°以上65°以下の範囲内に結晶方向をもつ結晶と、磁石素体11に対して115°以上125°以下の範囲内に結晶方向をもつ結晶と、磁石素体11に対して145°以上155°以下の範囲内に結晶方向をもつ結晶との何れか一つ以上を含んでいる。結晶方向とは、結晶が成長する方向あるいは結晶軸をいう。被覆層12は、上記のように、柱状結晶13から所定の角度θ(図3参照)を持って柱状結晶13から成長した複数の結晶方向をもつ双晶14を含むことで、被覆層12の厚さ方向と異なる方向から繰り返し加わる衝撃に対しても更に高い強度を有し、耐衝撃性を有することができる。
【0030】
被覆層12における柱状結晶13の存在比率を1としたときの柱状結晶13の存在比率に対する双晶14の存在比率の割合は、0.1以上0.6以下であることが好ましく、より好ましくは0.25以上0.5以下であり、更に好ましくは0.3以上0.45以下である。柱状結晶13の存在比率に対する双晶14の存在比率とは、被覆層12における柱状結晶13に対する双晶14との体積比をいうが、ここでは、磁石素体11に対する被覆層12の成膜方向の断面積における柱状結晶13に対する双晶14の面積比をいう。柱状結晶13の存在比率に対する双晶14の存在比率が0.1を下回ると、被覆層12の厚さ方向とは異なる方向から加わる衝撃に対して十分な耐衝撃性を有することはできないからである。また、柱状結晶13の存在比率に対する双晶14の存在比率が0.6を超えると、被覆層12の厚さ方向に加わる衝撃に対して十分な耐衝撃性を有することはできないからである。柱状結晶13は被覆層12を形成する主結晶として存在し、双晶14は柱状結晶13から成長する結晶として被覆層12内に形成されている。被覆層12を構成する結晶として双晶14が多すぎると、被覆層12内の柱状結晶13は少なくなるため、被覆層12の厚さ方向に繰り返し加わる衝撃に対して十分な耐衝撃性を有することはできなくなる。また、被覆層12に含まれる双晶14が少なすぎても被覆層12の厚さ方向とは異なる方向から繰り返し加わる衝撃に対して十分な耐衝撃性を有することはできなくなる。柱状結晶13の存在比率に対する双晶14の存在比率を、上記範囲内とすることで、被覆層12の厚さ方向に繰り返し加わる衝撃に対して十分な耐衝撃性を有しつつ、被覆層12の厚さ方向とは異なる方向から加わる衝撃に対しても十分な耐衝撃性を有することが可能となる。
【0031】
被覆層12における柱状結晶13と双晶14との存在比率の合計は、45%以上90%以下であることが好ましく、より好ましくは50%以上85%以下であり、更に好ましくは55%以上70%以下である。柱状結晶13と双晶14との存在比率とは、被覆層12における柱状結晶13と双晶14との体積比をいうが、ここでは、磁石素体11に対する被覆層12の成膜方向の断面積における柱状結晶13と双晶14との面積比をいう。被覆層12において柱状結晶13と双晶14の存在比率の合計が45%より少ないと、被覆層12の厚さ方向とは異なる方向から加わる衝撃に対して十分な耐衝撃性を有することはできないからである。また、被覆層12において柱状結晶13と双晶14の存在比率の合計が90%より多いと、被覆層12に欠陥が生じやすくなり、不純物、異常粒成長によって被覆層12の剥離やピンホールが発生しやすくなるからである。また、柱状結晶13以外の結晶との関係で双晶14が多くなると、被覆層12に欠陥が生じやすくなり、不純物、異常粒成長によって被覆層12の剥離やピンホールが発生しやすくなる。このため、柱状結晶13以外の結晶に対する双晶14の存在比率を上記範囲内とすることで、被覆層12に欠陥が生じるのを抑制すると共に、不純物、異常粒成長によって被覆層12の剥離やピンホールが発生するのを抑制することができる。
【0032】
柱状結晶13の結晶粒径は双晶14の結晶粒径より大きいことが好ましい。柱状結晶13は被覆層12を形成する主結晶として存在し、双晶14は柱状結晶13から成長する結晶であるため、柱状結晶13の粒子径が双晶14の粒子径よりも小さいと、被覆層12の厚さ方向に繰り返し加わる衝撃に対して十分な耐衝撃性を有することはできなくなる。よって、柱状結晶13の結晶粒径は、双晶14の結晶粒径よりも大きいことで、被覆層12の厚さ方向に繰り返し加わる衝撃に対して安定した耐衝撃性を有することができる。
【0033】
被覆層12の膜厚は、好ましくは1μm以上50μm以下であり、より好ましくは2μm以上40μm以下である。被覆層12の膜厚が1μm未満であると、磁石素体11の表面が外部に露出し易くなり、初期耐食性の確保が困難になる傾向がある。一方、被覆層12の膜厚が50μmを超えると、成膜コストが増大してしまう傾向がある。被覆層12の厚みを2μm以上40μm以下とすることによって、優れた耐食性を有する希土類永久磁石10とすることができる。
【0034】
よって、本実施形態の希土類永久磁石10は、被覆層12が柱状結晶13と所定角度の双晶14とを含み、柱状結晶13と双晶14との被覆層12における存在比率を所定の範囲内としているため、被覆層12の厚さ方向及び被覆層12の厚さ方向とは異なる方向から繰り返し加わる衝撃に対して耐衝撃性を有すると共に、優れた耐食性を有する。
【0035】
希土類永久磁石10は、磁石素体11と被覆層12との間に下地層を有していてもよい。下地層は、被覆層12と同様の組成であってもよく、例えば、めっきや気相法により形成した金属を主成分として含む金属層、塗布法や気相法により形成した無機化合物を主成分として含む無機層等からなるものであってもよい。希土類永久磁石10は、被覆層12の表面上に被覆層12と同じ材料又は被覆層12とは異なる材料で形成される被覆層を更に有していてもよい。また、希土類永久磁石10は、被覆層12の他に異なる結晶構造の層を備えていてもよい。例えば、非晶質層や光沢めっきなどの微結晶層であってもよい。希土類永久磁石10は、磁石素体11の表面に少なくとも被覆層12が形成されていればよい。
【0036】
<希土類永久磁石の製造方法>
本実施形態の希土類永久磁石10の製造方法について説明する。磁石素体11の各構成元素の原料金属を準備し、これらを用いてストリップキャスト(SC)法等を行なうことにより原料合金を作製する。原料金属は、例えば、希土類金属や希土類合金、純鉄、フェロボロン、またはこれらの合金が挙げられる。これらを用い、所望とする希土類焼結磁石の組成を有する原料合金を作製する。なお、原料合金としては、組成が異なる複数のものを用いてもよい。
【0037】
原料合金を粉砕して、原料合金粉末を準備する。原料合金の粉砕は、粗粉砕及び微粉砕の2段階で行うことが好ましい。粗粉砕は、例えば、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中で行うことができる。また、粗粉砕は、水素を吸蔵させた後、粉砕を行う水素吸蔵粉砕により行うこともできる。粗粉砕は、原料合金を粒径が数百μm程度の粉末になるまで粉砕を行う。
【0038】
微粉砕は、粗粉砕して得られた粉砕物を、更に平均粒径が3μm以上5μm以下の粉末とする。微粉砕は、例えば、ジェットミルなどを用いて行うことができる。原料合金の粉砕は、必ずしも粗粉砕と微粉砕との2段階で行なう必要はなく、所望の平均粒径に粉砕されていれば良い。また、原料合金を複数種類準備した場合は、複数種類の原料合金毎に予め別々に粉砕して混合するようにしてもよい。あるいは、複数種類の原料合金毎に予め別々に粗粉砕して粉砕物を得た後、それら複数種類の粉砕物を混合して微粉砕するようにしてもよい。さらには、原料合金を予め混合した後、粉砕を行うようにしてもよい。
【0039】
このようにして得られた原料粉末を磁場中で成形して、成形体を得る。原料粉末を電磁石中に配置された金型内に充填した後、電磁石により磁場を印加して原料粉末の結晶軸を配向させながら、原料粉末を加圧することにより成形を行なう。この磁場中の成形は、例えば、12.0kOe以上17.0kOe以下の磁場中、0.7t/cm2以上1.5t/cm2以下の圧力で行なう。
【0040】
磁場中成形後、成形体を真空又は不活性ガス雰囲気中で焼成し、焼結体を得る。焼成は、組成、粉砕方法、粒度等の条件に応じて適宜設定することが好ましいが、例えば、1000℃以上1100℃以下で1時間以上5時間以下行う。
【0041】
必要に応じて焼結体に時効処理を施すことにより、希土類焼結磁石(図1中、磁石素体11)を得る。時効処理を行うことによって、得られる希土類焼結磁石の保磁力HcJが向上する傾向にある。時効処理は、例えば、2段階に分けて行うことができ、800℃程度と600℃程度の2つの温度条件で時効処理を行うことが好ましい。上記条件で時効処理を行うことで、より優れた保磁力HcJを有する希土類焼結磁石が得られる。なお、時効処理を1段階で行う場合は、600℃程度の温度とすることが好ましい。
【0042】
このようにして得られた磁石素体11の表面に被覆層12を形成する。被覆層12としてめっき膜を形成する場合は、例えば、以下の手順で磁石素体11の表面上に被覆層12を形成する。
【0043】
めっき膜の形成を容易にするために、磁石素体11に、アルカリ脱脂処理、酸洗浄処理、スマット除去処理等の前処理を施す。前処理した磁石素体11を、ニッケル源、導電性塩、及びpH安定剤等を含むめっき浴に浸漬し、所定時間、電気めっきを行なう。
【0044】
電気めっきを行なう際、めっき浴は形成したいめっき膜に応じて選択すればよいが、その際、めっき浴の種類やめっき時の電流密度を調節することにより、被覆層12の平均結晶粒径及び結晶の形状を制御することができる。電流密度を0.01A/dm2以上0.3A/dm2以下とし、さらにバレルめっき法の場合、1バレル内において、メディア(鉄球)など、めっきが被着する全領域の面積に対して投入する磁石素体の表面積の合計の比(被着面積比)が1/1.8以上1/3.5以下の範囲となるようにする。また適切な光沢剤を使用して、被覆層12を形成することで、本発明の柱状結晶13と双晶14とを含む結晶構造を有する被覆層12を形成することができる。これによって、所望の厚みの被覆層12を、磁石素体11上に形成する。このようにして、磁石素体11と該磁石素体11の表面全体を覆う被覆層12とを有する希土類永久磁石10を得ることができる。
【0045】
めっき用の光沢剤は、例えば、必要に応じて半光沢添加剤又は光沢添加剤を用いる。半光沢添加剤は、例えば、ブチンジオール、クマリン、プロパギルアルコール又はホルマリンなどの硫黄を含まない有機物などがある。また、光沢添加剤のうち、一次光沢剤は、例えば、サッカリン、1,5−ナフタリンジスルホン酸ナトリウム、1,3,6−ナフタレントリスルホン酸ナトリウム、パラトルエンスルホンアミドなどである。二次光沢剤は、例えば、クマリン、2−ブチン−1,4−ジオール、エチレンシアンヒドリン、プロパギルアルコール、ホルムアルデヒド、チオ尿素、キノリン又はピリジンなどである。
【0046】
希土類永久磁石10の製造方法は上述の方法に限定されるものではなく、無電解めっき方法などによって、被覆層12を形成してもよい。なお、必ずしも磁石素体11の表面全体に被覆層12を形成する必要はなく、磁石素体11の形状や、希土類永久磁石10の用途に応じて、耐衝撃性を有することが求められる部位のみに被覆層12を形成してもよい。あるいは、被覆層12の表面上に被覆層12と同じ材料又は被覆層12とは異なる材料で形成される被覆層を更に有していてもよい。また、希土類永久磁石10は、被覆層12の他に異なる結晶構造の層を備えていてもよい。例えば、非晶質層や光沢めっきなどの微結晶層であってもよい。希土類永久磁石10は、磁石素体11の表面に少なくとも被覆層12が形成されていればよい。
【0047】
以上のように、本実施形態の希土類永久磁石10は、繰り返し加わる衝撃に対しては十分な耐衝撃性を有すると共に、優れた耐食性を有するので、この希土類永久磁石10は、例えばロータ表面に磁石を取り付けた表面磁石型(Surface Permanent Magnet:SPM)モータ、IPM(Interior Permanent Magnet)モータ、PRM(Permanent magnet Reluctance Motor)、ダイレクトドライブモータ(DDM:Direct drive Motor)などの磁石として好適に用いられる。
【0048】
<モータ>
本実施形態に係る被覆層を備える希土類永久磁石10をモータに用いた好適な実施形態について説明する。本実施形態に係る被覆層を備える希土類永久磁石10をSPMモータやIPMモータの永久磁石として適用した一例について説明する。図4は、本実施形態に係る被覆層を備える希土類永久磁石を適用したSPMモータの内部構造の一例を示す説明図である。本実施形態のSPMモータ20は、円筒状のロータ21とステータ22とを有している。図4に示すように、ロータ21は、円筒状のロータコア23と永久磁石24と磁石挿入スロット25とを有する。永久磁石24は、磁石挿入スロット25内に設けられている。永久磁石24は、円筒状のロータコア23の内周面に沿ってN極とS極が交互に並ぶように複数設けられている。永久磁石24は、本実施形態に係る被覆層を備える希土類永久磁石10が用いられる。ステータ22はロータ21の内側に配置されている。ステータ22は、外周面に沿って設けられた複数のステータコア26を有している。ステータコア26には、コイル27が巻装されている。このステータコア26と永久磁石24とは互いに対向するように配置されている。ステータ22は、電磁気的作用によってロータ21にトルクを与え、ロータ21は円周方向に回転する。
【0049】
SPMモータ20は、ロータ21に永久磁石24を備え、永久磁石24は繰り返し加わる衝撃に対して十分な耐衝撃性を有する優れた被覆層12(図1参照)で被覆されている。このため、モータの動作時の遠心力や発熱によるモータ部材の膨張や、ロータ21とステータ22とのギャップの間に粉塵等を巻き込んだとしても、本実施形態に係る被覆層を備える希土類永久磁石10を適用した永久磁石24は傷がつきにくく、永久磁石24の表面にクラック等の傷が発生し難いため、耐衝撃性を有する。また、磁石素体11(図1参照)の腐食を、長期間に亘って十分に抑制することができ、優れた耐食性を有する。磁石素体11はR−T−B系合金からなる希土類永久磁石であるため磁石素体11自体は腐食し易いものであっても磁石素体11の腐食の進行に伴う経時的な磁気特性の低下を十分に抑制することができるため、SPMモータ20は、従来よりも長期間に亘って高出力を維持することができる。
【0050】
図5は、本実施形態に係る被覆層を備える希土類永久磁石を適用したIPMモータの内部構造の一例を示す説明図である。図5に示すように、IPMモータ30はインナーロータ型のブラシレスモータとして構成されている。即ち、IPMモータ30は、ロータ31とステータ32とを有する。ロータ31は、円筒状のロータコア33と、円筒状のロータコア33の外周面に沿って所定の間隔で設けられる永久磁石34と、永久磁石34を収容する複数の磁石挿入スロット35とを有する。永久磁石34は、本実施形態に係る被覆層を備える希土類永久磁石10が用いられる。この永久磁石34は、ロータ31の円周方向に沿って隣り合う各々の磁石挿入スロット35内にN極とS極が交互に並ぶように設けられている。これによって、円周方向に沿って隣り合う永久磁石34は、ロータ31の径方向に沿って互いに逆の方向の磁力線を発生する。ステータ32は、その内周に、ロータ31の外周面に沿って所定の間隔で設けられた複数のステータコア36を有している。この複数のステータコア36はステータ32の中心に向けてロータ31に対向するようにステータ32の内壁から突設されている。各々のステータコア36にはコイル37が巻装されている。永久磁石34とステータコア36とは互いに対向するように設けられている。ステータ32は、電磁気的作用によってロータ31にトルクを与え、ロータ31は円周方向に回転する。
【0051】
IPMモータ30は、ロータ31の磁石挿入スロット35に永久磁石34を挿入して使用しても、永久磁石34は繰り返し加わる衝撃に対して十分な耐衝撃性を有する被覆層12(図1参照)で被覆されている。このため、本実施形態に係る被覆層を備える希土類永久磁石を適用した永久磁石34は被覆層12(図1参照)が傷ついて磁石素体11(図1参照)が露出することや被覆層12に割れや欠けが生じることを抑制することができるので、耐衝撃性を有すると共に、磁石素体11の腐食を、長期間に亘って十分に抑制することができ、優れた耐食性を有する。よって、IPMモータ30は、磁石素体11が露出し、腐食することにより発生する経時的な磁気特性の低下を十分に抑制することが可能となり、IPMモータ30は、長期間に亘って高出力を維持することができ、信頼性に優れる。
【0052】
また、本実施形態に係る被覆層12を備える希土類永久磁石10が適用されるモータは、希土類永久磁石が砂塵などの外乱粒子と接触する可能性のある構造や、希土類永久磁石と他のモータ部材とが接触する可能性のある構造を有するものであればよい。上述のSPMモータ20、IPMモータ30以外の他に、本実施形態に係る希土類永久磁石10が適用されるモータとしては、永久磁石直流モータ、リニア同期モータ、ボイスコイルモータ、振動モータなどがある。
【0053】
このように、希土類永久磁石10は、SPMモータ20やIPMモータ30などの永久磁石として砂塵などと接触する可能性があるような過酷な環境下で使用しても、繰り返し加わる衝撃に対して耐衝撃性を有すると共に、優れた耐食性を有する。従って、希土類永久磁石10は、モータ用などの永久磁石として使用しても希土類永久磁石10の有する磁気特性を長期間に亘って維持することが可能であるため、長期間に亘って安定して高出力を維持することができる。
【実施例】
【0054】
本発明の内容を実施例及び比較例を用いて以下に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
【0055】
<希土類永久磁石の作製>
[実施例1]
Nd14Dy1Fe787の組成を有するインゴットを、スタンプミル及びボールミルにより粉砕し、所望の組成を有する合金粉末を得た。
【0056】
得られた合金粉末を、磁場中でプレス成形して成形体を作製した。この成形体を、1100℃程度での温度で1時間保持した後、焼結して焼結体を得た。この焼結体に、Arガス雰囲気下で、600℃程度の温度で2時間保持して時効処理を施し、希土類焼結磁石を得た。得られた希土類焼結磁石を、20×10×2(mm)の大きさに加工し、バレル研磨処理により面取りを行って磁石素体を得た。この磁石素体に、アルカリ脱脂処理、水洗、硝酸溶液による酸洗浄処理、水洗、超音波洗浄によるスマット除去処理、水洗からなる前処理を施した。
【0057】
表1の組成を有するめっき浴を調製した。このめっき浴のpHは4.5、温度は40℃であった。
【0058】
【表1】

【0059】
上記表1の組成を有するめっき浴に、上述の通り、前処理を施した磁石素体を浸漬し、電気めっきを行った。電気めっきは、バレルめっき法により、電流密度0.1A/dm2とし、めっきが被着する全領域の面積に対する磁石素体の表面積の比(被着面積比)が1/2.5となるようにして、磁石素体の表面に被覆層として磁石素体の表面にNiめっき膜を10μm程度形成した。このようにして、磁石素体の表面上にNiめっき膜からなる被覆層が形成された希土類永久磁石を得た。得られた希土類永久磁石を、純水で洗浄して乾燥し、下記評価用の試料とした。
【0060】
[実施例2]
下記表2の組成を有するめっき浴(pH:4.5、温度:50℃)を用いて、電流密度0.2A/dm2、被着面積比が1/2.0となるようにして、被覆層として磁石素体の表面にNiめっき膜を形成したこと以外は、実施例1と同様にして希土類永久磁石を得た。
【0061】
【表2】

【0062】
[実施例3]
下記表3の組成を有するめっき浴(pH:4.0、温度:50℃)を用いて、電流密度0.1A/dm2、被着面積比が1/3.0となるようにして、被覆層として磁石素体の表面にNiめっき膜を形成したこと以外は、実施例1と同様にして希土類永久磁石を得た。
【0063】
【表3】

【0064】
[実施例4]
下記表4の組成を有するめっき浴(pH:4.0、温度:50℃)を用いて、電流密度0.01A/dm2、被着面積比が1/3.0となるようにして、被覆層として磁石素体の表面にNiめっき膜を形成したこと以外は、実施例1と同様にして希土類永久磁石を得た。
【0065】
【表4】

【0066】
[比較例1]
下記表5の組成を有するめっき浴(pH:4.5、温度:50℃)を用いて、電流密度0.8A/dm2、被着面積比が1/1.5となるようにして、被覆層として磁石素体の表面にNiめっき膜を形成したこと以外は、実施例1と同様にして希土類永久磁石を得た。
【0067】
【表5】

【0068】
<被覆層の結晶構造の評価>
被覆層の結晶構造の評価は、被覆層を収束イオンビーム(Focused Ion Beam:FIB)で断面加工した後、走査イオン顕微鏡(Structured Illumination Microscopy:SIM)で観察、撮影した。撮影した画像を2次元フーリエ変換することで、結晶の成長方向(角度)と当該角度をもつ結晶の頻度(割合)とを算出した。算出された結晶の成長方向(角度)と当該角度をもつ結晶の頻度(割合)とから、被覆層(めっき)の面積に対する柱状結晶の存在比率(%)と、柱状結晶の存在比率(%)に対する双晶の存在比率(%)の割合と、被覆層(めっき)の面積における柱状結晶と双晶との存在比率(%)の合計とを求めた。なお、柱状結晶の存在比率(%)に対する双晶の存在比率(%)の割合は、被覆層(めっき)における柱状結晶の存在比率を1とした。実施例1から実施例4、比較例1の評価結果を下記表6に示す。
【0069】
<硬さ>
市販の微小ビッカース硬度計を用いて、希土類永久磁石の被覆層のビッカース硬度(Hv)を計測した。この計測結果を下記表6に示す。
【0070】
【表6】

【0071】
<摩耗量>
上述の通り作製した希土類永久磁石を用いて、ダイレクトドライブ方式の(ダイレクトドライブ)モータ((Direct Drive) motor:DDモータ)を組み立てた。DDモータは、ロータが24極、ステータが36スロットのアウターロータ方式の3相のダイレクトドライブブラシレスDCモータとした。このDDモータを、降塵試験装置内に設置し、「JIS C60068−2−68」に準拠して砂塵(降塵)試験を行った(試験種類:試験Lb)。砂塵試験中に、DDモータを、3相インバータ正弦波駆動により回転数1400rpmで所定時間(1日から30日間)連続駆動させた。実施例1から実施例4、比較例1の結果を下記表7に示す。
【0072】
砂塵試験後のDDモータを分解し、砂塵の衝突により生じた希土類永久磁石の被覆層表面の傷を任意に10点選択した。市販のレーザー顕微鏡を用いて選択した傷の表面形状を観察し、高さ情報を含んだ画像情報を記録した。この画像情報から傷深さを求め、その最大値を摩耗量とした。傷の観察の結果は以下のAからDに分類して評価した。実施例1から実施例4、比較例1の結果を表7に示す。
A:希土類永久磁石の被覆層の摩耗量が1μm以下であり、且つ被覆層の表面の傷部にクラックが発生していないもの
B:摩耗量が1μm以上であり、且つ被覆層の表面の傷部にクラックが発生していないもの
C:被覆層の表面の傷部にクラックが発生しているもの
D:磁石素体が露出しているもの
【0073】
<耐食性>
上述の砂塵試験後のDDモータを分解して取り出した希土類永久磁石を、温度85℃、相対湿度85RH%に維持された恒温恒湿槽に500時間保持し、保持前後における外観変化を目視にて評価した。評価基準は、以下のA、Bに分類して各評価を行った。実施例1から実施例4、比較例1の各評価結果を下記表7に示す。
A:外観変化が認められなかったもの
B:傷部から発錆びが認められたもの
【0074】
【表7】

【0075】
砂塵試験において、実施例1から4は、降塵を30日間行った後の被覆層の傷部にクラックは発生しておらず、腐食も生じておらず外観に変化は見られなかった。これに対し、比較例1は、被覆層の表面の傷部にクラックが発生しているか被覆層に磁石素体が露出するほどのクラックが発生し、傷部から腐食が発生していた。表6、7より、被覆層(めっき)は、柱状結晶と双晶とを含み、その被覆層に含まれる柱状結晶の存在比率を所定の範囲内とすることで、被覆層の硬さ(Hv)は抑えられるので被覆層の耐傷性が向上するといえる。従って、被覆層が柱状結晶と双晶とを含み、被覆層に含まれる柱状結晶の存在比率を所定の範囲内とする希土類永久磁石は、安定して高い耐衝撃性を有すると共に、優れた耐食性を有することが判明した。
【産業上の利用可能性】
【0076】
以上のように、本発明に係る希土類永久磁石は、優れた耐衝撃性及び耐食性を有するので、モータ用の永久磁石として好適に用いることができる。
【符号の説明】
【0077】
10 希土類永久磁石
11 磁石素体
12 被覆層
13 柱状結晶
14 双晶
20 SPMモータ
21、31 ロータ
22、32 ステータ
23、33 ロータコア
24、34 永久磁石
25、35 磁石挿入スロット
26、36 ステータコア
27、37 コイル
30 IPMモータ

【特許請求の範囲】
【請求項1】
磁石素体と、前記磁石素体の表面に形成される被覆層とを有し、
前記被覆層が、前記磁石素体の表面の接線に対して垂直方向に±10°の範囲内で成長した柱状結晶と、前記柱状結晶から前記柱状結晶とは異なる方向に成長した双晶とを含み、
前記磁石素体の表面に形成される前記被覆層の面積に対する前記柱状結晶の存在比率が、20%以上80%以下であることを特徴とする希土類永久磁石。
【請求項2】
前記双晶が、前記磁石素体の表面の接線に対して30°と60°と120°と150°との各々の方向から±5°の範囲内に結晶方向をもつ結晶である請求項1に記載の希土類永久磁石。
【請求項3】
前記被覆層における前記柱状結晶の存在比率を1としたときの前記柱状結晶の存在比率に対する前記双晶の存在比率の割合が、0.1以上0.6以下である請求項1又は2に記載の希土類永久磁石。
【請求項4】
前記被覆層における前記柱状結晶と前記双晶との存在比率の合計が、45%以上90%以下である請求項1から3の何れか一つに記載の希土類永久磁石。
【請求項5】
前記被覆層が、金属層である請求項1から4の何れか一つに記載の希土類永久磁石。
【請求項6】
前記被覆層が、電気めっきで形成される請求項1から5の何れか一つに記載の希土類永久磁石。
【請求項7】
前記被覆層が、Niを含むNiめっき膜である請求項1から6の何れか一つに記載の希土類永久磁石。
【請求項8】
請求項1から7の何れか一つに記載の希土類永久磁石を含むことを特徴とするモータ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2011−216667(P2011−216667A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2010−83464(P2010−83464)
【出願日】平成22年3月31日(2010.3.31)
【出願人】(000003067)TDK株式会社 (7,238)
【Fターム(参考)】