説明

Fターム[5F048AB04]の内容

MOSIC、バイポーラ・MOSIC (97,815) | 用途 (4,368) | 論理回路 (1,440) | インバータ回路 (545)

Fターム[5F048AB04]に分類される特許

41 - 60 / 545


【課題】印刷可能半導体素子を製造するとともに、印刷可能半導体素子を基板表面上に組み立てるための方法及びデバイス、及び伸張形態で良好な性能が得られる伸縮可能な半導体構造及び伸縮可能な電子デバイスを提供する。
【解決手段】予め歪みが加えられた拡張状態の弾性基板が与えられる。印刷可能な半導体構造の内面の少なくとも一部を、予め歪みが加えられた拡張状態の弾性基板の外面に対して結合される。半導体構造の内面を湾曲させることにより弾性基板を少なくとも部分的に緩和状態へと弛緩させる。湾曲した内面を有する半導体構造が弾性基板から他の基板、好ましくはフレキシブル基板へと転写される。 (もっと読む)


【課題】横型二重拡散構造を有する電界効果トランジスタの高集積化を可能とする半導体装置を提供する。
【解決手段】半導体装置1Nは、ゲート電極17の幅方向両側のうちの一方の側で延在するP型ボディ領域20Pと、他方の側で延在するN型ボディ領域20Nと、その一方の側に形成されてP型ボディ領域20Pと接合するP型不純物拡散領域32Pと、その他方の側でP型不純物拡散領域32Pと対向する位置に形成されてN型ボディ領域20Nと接合するN型不純物拡散領域32Nと、その一方の側に形成されてP型ボディ領域30Nと接合するN型不純物拡散領域31Nと、その他方の側でN型不純物拡散領域31Nと対向する位置に形成されてN型ボディ領域20Nと接合するP型不純物拡散領域31Pとを備える。 (もっと読む)


【課題】アクティブ発振防止付き複合半導体デバイスを提供する。
【解決手段】本明細書は、アクティブ発振制御付き複合半導体デバイスの種々の実現を開示する。1つの好適な実現では、ノーマリオフ複合半導体デバイスが、ノーマリオンIII-窒化物パワートランジスタ、及びこのノーマリオンIII-窒化物パワートランジスタとカスコード接続された低電圧(LV)デバイスを具えて、ノーマリオフ複合半導体デバイスを形成する。このLVデバイスは、例えば修正したボディ打込み領域により低減した出力抵抗、及び例えば修正した酸化物の厚さにより低減したトランスコンダクタンスの一方または両方を含むように構成されて、複合半導体デバイスのゲインを約10,000以下にすることができる。 (もっと読む)


【課題】回路動作速度を犠牲にすることなく、待機時の消費電力を小さくすることが可能な半導体集積回路装置を提供する。
【解決手段】同一Si基板上に少なくともソース・ゲート間又はドレイン・ゲート間に流れるトンネル電流の大きさが異なる複数種類のMOSトランジスタを設け、当該複数種類のMOSトランジスタの内、トンネル電流が大きい少なくとも1つのMOSトランジスタで構成された主回路と、トンネル電流が小さい少なくとも1つのMOSトランジスタで構成され、主回路と2つの電源の少なくとも一方の間に挿入した制御回路を有し、制御回路に供給する制御信号で主回路を構成するソース・ゲート間又はドレイン・ゲート間に電流が流れることの許容/不許容を制御し、待機時間中に主回路のINとOUTの論理レベルが異なる際のIN−OUT間リーク電流を防止するスイッチを主回路のIN又はOUTに設ける。 (もっと読む)


【課題】大量の商業マイクロエレクトロニクスメーカーがアクセスし易い最先端の基礎設備を使用して、高性能且つ費用対効果に優れた耐放射線性集積回路(RHICs)を提供する。
【解決手段】様々な形式の放射線エネルギーによって引き起こされる有害な影響を減少し、又は排除するために、従来の設計及びプロセスを使用する一方で特殊構造を含んで半導体デバイスを作成する。このような半導体デバイスは本願で開示された1台以上の寄生的な分離デバイス、及び/又は、埋め込みガードリング構造を含む。これら新規な構造に対応する設計、及び/又は、工程ステップの導入には、従来のCMOS製作工程との互換性がある。したがって、比較的低い費用で比較的簡単に実施することができる。 (もっと読む)


【課題】入力信号が有する2値の電位に関わらず、正常に動作させることが可能なデジタ
ル回路の提案を課題とする。
【解決手段】半導体装置の一態様は、入力端子、容量素子、スイッチ、トランジスタ、配
線、及び出力端子を有し、前記入力端子は、前記容量素子の第1の電極に電気的に接続さ
れ、前記配線は、前記スイッチを介して前記容量素子の第2の電極に電気的に接続され、
前記トランジスタのゲートは、前記容量素子の第2の電極に電気的に接続され、前記トラ
ンジスタのソース又はドレインの一方は、前記配線に電気的に接続され、前記トランジス
タのソース又はドレインの他方は、前記配線に電気的に接続されていることを特徴とする
(もっと読む)


【課題】単一金属酸化物半導体材料をチャネル層として使用時に極性をp型伝導又はn型伝導に変更できる同時両極性電界効果型トランジスタを実現し、さらに、該同時両極性TFTを用いたCMOS構造のトランジスタを提供する。
【解決手段】基板上に設けたチャネル層と、前記チャネル層上又は下にゲート絶縁膜を介して設けられて前記チャネル層のキャリア濃度を制御するゲート電極を有する電界効果型トランジスタにおいて、前記チャネル層材料は、酸化第一スズ(SnO)薄膜であり、前記チャネル層とゲート絶縁膜との界面の欠陥準位密度が5×1014cm−2eV−1以下であり、前記チャネル層は、電子(n型)及び正孔(p型)伝導性の両方の動作が可能な同時両極性を有することを特徴とする同時両極性電界効果型トランジスタ。 (もっと読む)


【課題】隣接する2つのトランジスタ同士が接続された構成を有し、省スペースと電流集中による信頼性の低下の抑制とを両立させた半導体装置を実現できるようにする。
【解決手段】半導体装置は、第1のトランジスタ101と接続された第1のバス111、第2のトランジスタ102と接続された第2のバス112と、第1のバス111と第2のバス112との間に形成され、第1のバス111と第2のバス112とを接続するバス間配線121とを備えている。バス間配線121は、第1のバス111における第2のバス112と対向する辺の一部及び第2のバス112における第1のバス111と対向する辺の一部と接続されている。第1のコンタクトパッド131は、第1のバス111の一部と接続され、第2のコンタクトパッド132は、第2のバス112の一部と接続されている。 (もっと読む)


【課題】小型化を実現し得る半導体装置を提供することにある。
【解決手段】半導体基板に形成され、素子分離領域により画定された第1の素子領域12bと、第1の素子領域上に形成された第1のゲート電極21bと、第1のゲート電極の第1の側における第1の素子領域に形成された第1のソース領域32Sと、第1のゲート電極の第2の側における第1の素子領域に形成された第1のドレイン領域32Dとを有する第1のトランジスタ36と、第1のゲート電極の第1の側における素子分離領域上に、第1のゲート電極と並行するように形成された第1のパターン38aと、第1のソース領域に接続された第1の導体プラグ44cとを有し、第1の導体プラグは、接地線及び電源線のうちの一方に電気的に接続されており、第1のパターンは、接地線及び電源線のうちの他方に電気的に接続されている。 (もっと読む)


【課題】本発明は、多動作電圧のMOSFETを生じる形態を提供する。
【解決手段】一般に、集積回路構造は平面に沿って形成された主表面を有する半導体領域と、表面中に形成された第1及び第2の空間的に分離されたドープ領域を含む。第1の領域とは異なる伝導形のチャネルを形成する第3のドープ領域が、第1の領域上に配置される。異なる伝導形をもち、チャネルを形成する第4のドープ領域が、第2の領域上に配置される。2つのトランジスタのそれぞれにゲート構造を形成するプロセスにより、2つのトランジスタ間で異なる厚さの酸化物層が形成される。各トランジスタは更に、それぞれ第3及び第4の領域上に配置され、第3及び第4の領域に対して相対する伝導形をもつ第5及び第6層を含む。 (もっと読む)


【課題】埋め込み絶縁層により活性層と支持基板とが電気的に絶縁された半導体基板において、支持基板の電位を活性層の表面から取り出すための基板コンタクトの低抵抗化を図ることができる半導体装置およびその製造方法を提供すること。
【解決手段】活性層16に素子領域4およびコンタクト領域5が形成された厚膜SOI基板2において、CMOSトランジスタ7のB/L層29およびL/I層37、npnバイポーラトランジスタ8のコレクタ層49と同一層に、n型基板コンタクト12の貫通コンタクト58を取り囲むn型コンタクト埋め込み層57を形成する。 (もっと読む)


【課題】薄膜の応力を用いてしきい値電圧を制御する。
【解決手段】第1の半導体層に設けられた第1のゲート電極と、第2の半導体層に設けられた第2のゲート電極と、第1の半導体層と第2の半導体層に接して設けられた第1の絶縁層と、第1の絶縁層が設けられた第1の半導体層の一方の面の反対側に設けられた第2の絶縁層と、第1の絶縁層が設けられた第2の半導体層の一方の面の反対側に設けられた第2の絶縁層及び第3の絶縁層と、を有し、第1の半導体層には第2の絶縁層により応力が加わり、第2の半導体層には第2の絶縁層と第3の絶縁層により応力が加わることで、第1の半導体層及び第2の半導体層に加わる応力が異なる。 (もっと読む)


【課題】レイアウトの複雑化や面積増大を伴わずにオフリーク電流の抑制と高速化を両立した半導体回路の実現。
【解決手段】通常動作モードと、少なくとも一部の回路に供給する信号を固定して、少なくとも一部の回路の状態を固定する低消費電力モードと、を備え、少なくとも一部の回路20において、低消費電力モード時にオン状態になるトランジスタPT1,PT3,NT2,NT4の閾値電圧が、低消費電力モード時にオフ状態になるトランジスタPT2,PT4,NT1,NT3の閾値電圧より小さい。 (もっと読む)


【課題】メーカーの設計負担を増加させることなくセルタイプの異なるICを実現することができるとともに、チップサイズおよび消費電力並びに動作速度が最適化された半導体集積回路を容易に実現可能な設計技術を提供する。
【解決手段】所望の機能を有する回路セルの設計情報を目的別にオブジェクトとして記述し、所定のオブジェクトの情報の削除もしくは追加のみで基体電位固定型セルと基体電位可変型セルのいずれをも構成可能なセル情報として、セルライブラリに登録するようにした。 (もっと読む)


【課題】大面積基板など、熱収縮による影響の大きい基板に形成された半導体素子であっても、その影響を受けずに動作するような半導体素子の提供すること。また、そのような半導体素子を搭載し、薄膜半導体回路及び薄膜半導体装置を提供すること。さらに、多少のマスクずれが生じたとしても、その影響を受けずに動作するような半導体素子を提供する。
【解決手段】ドレイン領域114、117側の半導体層の低濃度不純物領域と重なるように形成した複数のゲート電極102を有し、それぞれのゲート電極102が形成するチャネル領域122、123に流れる電流の向きが一方向と一方向と反対の方向となるようにそれぞれのゲート電極102に対応するソース領域115、116とドレイン領域114、117を形成し、一方向に電流が流れるチャネル領域122と一方向と反対の方向に電流が流れるチャネル領域123の数が等しい薄膜トランジスタ。 (もっと読む)


【課題】I/O用バルク部とコアロジック用SOI部が混載されたバルク&SOIハイブリッド型CMISデバイスでは、閾値電圧制御の最適化のため多数のゲートスタックを用いる必要があり、プロセス及び構造が複雑になるという問題がある。
【解決手段】本願発明は、High−kゲート絶縁膜およびメタルゲート電極を有するSOI型半導体CMISFET集積回路装置において、いずれかのバックゲート半導体領域に不純物を導入することにより、対応する部分のMISFETの閾値電圧を調整するものである。 (もっと読む)


【課題】I/O用バルク部とコアロジック用SOI部が混載されたバルク&SOIハイブリッド型CMISデバイスでは、閾値電圧制御の最適化のため多数のゲートスタックを用いる必要があり、プロセス及び構造が複雑になるという問題がある。
【解決手段】本願発明は、High−kゲート絶縁膜およびメタルゲート電極を有するSOI型半導体CMISFET集積回路装置において、いずれかのバックゲート半導体領域に不純物を導入することにより、対応する部分のMISFETの閾値電圧を調整するものである。 (もっと読む)


【課題】従来に比してオン電圧性能に優れた横型IGBT、および順方向電圧特性に優れた横型FWDを同一基板上に構成可能とする半導体装置を提供する。
【解決手段】半導体基板上において、横型IGBTと、横型FWDとが、絶縁体であるトレンチ絶縁仕切り部を挟むように横方向に隣接配置されて成る半導体装置であって、横型IGBTは、平面視した場合に、エミッタ領域と当該横型IGBTのドリフト領域との境界面の幅がコレクタ領域と当該横型IGBTのドリフト領域との境界面の幅より狭くなるよう形成されており、横型FWDは、平面視した場合に、カソード領域と当該横型FWDのドリフト領域との境界面の幅がアノード領域と当該横型FWDのドリフト領域との境界面の幅より狭くなるよう形成されていることを特徴とする、半導体装置。 (もっと読む)


【課題】より良い製造工程で良好な特性の半導体装置を製造する技術を提供する。
【解決手段】導電性膜上に第1領域1Asを覆い、第1領域と隣接する第2領域1Adを開口したマスク膜を形成し、導電性膜中に不純物イオンを注入し、導電性膜を選択的に除去することにより、第1領域と第2領域との境界を含む領域にゲート電極GE1を形成する。その後、熱処理を施し、ゲート電極の側壁に側壁酸化膜7を形成し、ゲート電極の第2領域側の端部の下方に位置する半導体基板中にドレイン領域を形成し、ゲート電極の第1領域側の端部の下方に位置する半導体基板中にソース領域を形成する。かかる工程によれば、ドレイン領域側のバーズビーク部7dを大きくし、ソース領域側のバーズビーク部を小さくできる。よって、GIDLが緩和され、オフリーク電流を減少させ、また、オン電流を増加させることができる。 (もっと読む)


【課題】半導体装置においてチップサイズに影響を与えないデカップリング容量を得る。
【解決手段】半導体装置は、基板1、10と、高濃度拡散層領域11と、第1ウェル4と、第2ウェル3とを具備している。基板1、10は第1導電型である。高濃度拡散層領域11は基板1、10上に形成され、第1導電型である。第1ウェル4は基板1、10上に形成され、高濃度拡散領域11の一方側に設けられ、第1導電型である。第2ウェル3は基板1、10上に形成され、高濃度拡散領域11の他方側に設けられ、第1導電型と逆導電型となる第2導電型である。第2ウェル3と高濃度拡散領域11との間、及び、第2ウェル3と基板1、10との間でデカップリング容量が形成される。 (もっと読む)


41 - 60 / 545