説明

Fターム[5F058BF04]の内容

絶縁膜の形成 (41,121) | 無機絶縁膜の形成法 (10,542) | 気相堆積 (7,977) | 化学気相堆積 (2,639) | 減圧CVD (411)

Fターム[5F058BF04]に分類される特許

161 - 180 / 411


【課題】酸化剤の供給量や供給時間を増大させることなく酸化膜の被覆性やローディング効果を改善する。
【解決手段】少なくとも1枚の基板を処理室内に搬入する基板搬入工程と、前記基板を加熱しながら第1の反応物質と酸素原子を含む第2の反応物質とを前記処理室内に交互に供給して前記基板上に酸化膜を形成する酸化膜形成工程と、前記基板を前記処理室内から搬出する基板搬出工程と、備え、前記酸化膜形成工程では、基板温度が前記第1の反応物質の自己分解温度以下であり、前記第2の反応物質に紫外領域の光を照射することを特徴とする半導体デバイスの製造方法が提供される。 (もっと読む)


【課題】低温処理で、所望のSiN膜を製造できるようにする。
【解決手段】処理対象に対して窒素系ガス(窒素(N)ガス、アンモニア(NH)ガス、ジアジン(N)ガス、ヒドラジン(N)ガスなど)を供給する手段と、前記処理対象に対してシリコン系ガス(アミノ基、ジメチルアミノ基又はエチルアミノ基を有するもの。シランガス、ジシランガス、ジシラザンガスなど)を供給する手段と、前記各ガスの供給時に前記処理対象を減圧環境とする手段とを備える。 (もっと読む)


【課題】酸化膜の形成に自由度をもたせる。低温で窒素成分を低減または含まない酸化膜を形成する。バッチ方式の成長装置にて低温で厚い酸化膜膜を形成する。
【解決手段】アルキル基或いはアルコキシ基を含むシリコン系のガス又はシロキサンガス又はシラザンガスと、前記ガスを酸化させる酸化剤とを、減圧状態で500℃以下の温度下で反応させる。前記ガスに対して、シランガス、ジシランガス、リン系ガス、又は、ボロン系ガスを添加剤として反応させる。 (もっと読む)


【課題】良好な形状のsingle metal/dual high−k構造を形成し、nMOS、pMOSそれぞれに適したフラットバンド電圧を得ることができる半導体装置を得ること。
【解決手段】本発明の一実施形態における半導体装置100は、第1導電型のMOSFET10と、第2導電型のMOSFET20を有する。第1および第2導電型のMOSFET10,20は、半導体基板1上に形成された第1の絶縁膜2と、第1の絶縁膜2上に形成され、第1の絶縁膜2よりも誘電率の高い絶縁材料からなる第2の絶縁膜4と、第2の絶縁膜4上に形成され、第2の絶縁膜4に拡散して仕事関数を制御する材料を含むメタル層5を下層に有するゲート電極7と、を備える。また、第2導電型のMOSFET20は、第1の絶縁膜2と第2の絶縁膜4との間に形成され、仕事関数を制御する材料が第1の絶縁膜2界面に拡散するのを防止する拡散防止膜3をさらに備える。 (もっと読む)


ビスアミノシラシクロブタンと、窒素供給ガス、酸素供給ガスおよびこれらの混合物から選択した原料ガスとの反応ガス混合物の熱重合によるシリコン含有薄膜の生成方法。堆積膜は窒化ケイ素、炭窒化ケイ素、二酸化ケイ素または炭素ドープ二酸化ケイ素であってもよい。これら膜は、半導体デバイスにおける誘電体、不動態化膜、バリア膜、スペーサ、ライナおよび/またはストレッサとして有用である。
(もっと読む)


【課題】 CZ基板を用いた絶縁ゲート型の半導体装置の製造方法において、ゲート酸化膜の絶縁耐圧を十分に確保することができる製造方法を提供すること。
【解決手段】 プラズマCVD法によって、CZ基板6の表面に水素が含有されたゲート酸化膜10を形成する工程と、ゲート酸化膜10を熱処理する工程を備えている。ゲート酸化膜10を熱処理することによって、ゲート酸化膜10内の水素と、ゲート酸化膜10とCZ基板6の界面近傍のCZ基板6内に存在する酸素析出欠陥との間で還元反応が生じる。これによって、CZ基板6内の酸素が除去され、ゲート酸化膜10の絶縁耐圧を十分に確保することができる。 (もっと読む)


【課題】原料ガスを間欠的に供給する際に、安全性を維持しつつ多量の原料ガスを処理容器内へ供給することができ、この結果、成膜レートを向上できるのみならず、膜中における原料ガスに含まれる元素の濃度をコントロールして、例えばこの元素濃度を高くすることが可能な成膜方法を提供する。
【解決手段】被処理体Wが収容されて真空引き可能になされた処理容器4内で被処理体Wの表面に薄膜を形成する成膜方法において、処理容器4内へ原料ガスを、間に間欠期間を挟んで複数回供給して原料ガスを被処理体Wの表面に吸着させる吸着工程と、処理容器4内へ反応ガスを供給して被処理体Wの表面に吸着している原料ガスと反応させて薄膜を形成する反応工程とを交互に複数回繰り返し行うようにする。 (もっと読む)


【課題】半導体装置の製造に使用されるシリコン酸化膜の下地依存性を改善することによって、シリコン酸化膜の狭スペースへの埋め込み性やモフォロジーを向上させる。
【解決手段】半導体素子部を有するSi基板1の表面に有機基を含まないSi含有分子を吸着させ、Si含有分子による吸着層12を形成する。あるいは、Si基板1上にSiリッチなSiN系保護膜を形成する。吸着層12またはSiリッチなSiN系保護膜上から有機シリコン材料ガスとオゾン等の活性化された酸素を含むガスとを供給し、Si基板1上にシリコン酸化物からなる絶縁膜13を形成する。 (もっと読む)


窒化ケイ素系誘電体層を堆積する方法が提供される。該方法は、ケイ素前駆体及びラジカル窒素前駆体を堆積チャンバーに導入することを含む。前記ケイ素前駆体は、N−Si−H結合、N−Si−Si結合及び/又はSi−Si−H結合を有する。前記ラジカル窒素前駆体は、内包酸素を実質的に含まない。前記ラジカル窒素前駆体は、堆積チャンバーの外で発生させる。前記ケイ素前駆体及び前記ラジカル窒素前駆体は、相互作用して前記窒化ケイ素系誘電体層を形成する。
(もっと読む)


【課題】基板表面の荒れを抑制して基板を処理できる工程を備える半導体装置の製造方法を提供する。
【解決手段】処理室内に、表面に2nm以下の酸化膜が形成されている基板を搬入する工程(ステップ302)と、その後、処理室内でNOガスによりパージを行う工程(ステップ305)と、その後、処理室内で基板を処理する工程(ステップ306)と、その後、処理室内から基板を搬出する工程(ステップ309)と、を備える。 (もっと読む)


【課題】真空容器内の回転テーブルに基板を回転方向に並べて載置し、また互いに反応する複数の反応ガスの処理領域をこの基板の回転方向に沿って形成し、回転テーブルを回転させてこれらの複数の処理領域に基板を順番に通過させて反応生成物の層を多数積層して薄膜を形成するにあたり、基板へのガス流を一定化して面内及び面間において膜厚が均一及び膜質が均質且つ良好な薄膜を得ること。
【解決手段】夫々の反応ガスの処理領域から各々の反応ガスを排気する排気路を個別に設けると共にこれらの処理領域の間に分離領域を設けて、基板へのガス流が一定化するように、これらの排気路から排気するガス流量比及び真空容器内の圧力を調整する。 (もっと読む)


【課題】原料ガスの混合を十分に低減して適切な分子層堆積を実現すると共に、スループットを向上し得る成膜装置及び成膜方法を提供する。
【解決手段】成膜装置10は、気密可能な円筒状の容器21内に設けられ、開口部を有し、容器の中心軸に沿った第1の方向に一の間隔で配列される複数の第1板状部材23bと、第1の方向に一の間隔で配列され、複数の第1板状部材23bが有する開口部の内側を往復運動可能な複数の第2板状部材24bとを備える。複数の第1板状部材23bのうち第1の一対の第1板状部材23bにより、容器の内周面に向かう第2の方向に第1のガスが流れる第1の流路が画成され、複数の第1板状部材23bのうち第2の一対の第1板状部材23bにより、第2の方向に第2のガスが流れる第2の流路が画成され、複数の第2板状部材24bのうち一対の第2板状部材24bの間に基板が保持される。 (もっと読む)


【課題】微細化を行っても、書き込み/消去特性、繰り返し特性、およびリテンション特性に優れたMONOS型メモリセルを提供する。
【解決手段】不揮発性半導体記憶装置のメモリセルは、MONOS型の構造をしており、電荷蓄積層が複数の絶縁物層から構成される。それらの絶縁膜の隣接する層間の伝導帯端エネルギーと価電子帯端エネルギーの関係は、トンネル絶縁膜からブロック絶縁膜に向かって、次第に大きくなるか、または、次第に小さくなるかのいずれかである。さらに、ブロック絶縁膜の比誘電率をεrとすれば、電荷蓄積層とブロック絶縁膜の間のエネルギー障壁は、電子に対して4.5εr-2/3(eV)以上、3.8eV以下、正孔に対して4.0εr-2/3(eV)以上、3.8eV以下である。 (もっと読む)


【課題】 シリコン窒化膜などの面内均一性の向上、ステップカバレッジの向上及びI−V耐圧特性などの膜質の向上を図ることができるとともに、単位層ごとに成膜後、表面処理して薄膜を積層形成することができる単位層ポスト処理を用いた触媒化学蒸着法による成膜方法を提供する。
【解決手段】 反応容器2内にシランガスとアンモニアガスを含む混合ガスを原料ガスとして矩形パルス状に導入し、触媒体8により原料ガスを接触熱分解して基板5にシリコン窒化膜を成膜する成膜工程と、アンモニアガスを触媒体8に接触させた後に基板5上のシリコン窒化膜表面に晒す一の表面処理工程と、水素ガスを触媒体8に接触させた後に基板5上のシリコン窒化膜表面に晒す他の表面処理工程とを1サイクルとして、この一サイクルの工程を繰り返して単位層ごとにポスト処理した薄膜を積層する。 (もっと読む)


【課題】基板の温度の昇降を効率化することが可能な成膜装置、成膜方法を提供する。
【解決手段】開示される成膜装置は、基板を放射加熱する加熱部7と、成膜装置の容器内に回転可能に設けたサセプタ2と、サセプタ2の一の面に設けた基板載置領域24と、一の面に第1反応ガスを供給する第1反応ガス供給部31と、第1反応ガス供給部31と離間し、一の面に第2反応ガスを供給する第2反応ガス供給部32と、第1反応ガスが供給される第1処理領域P1と第2反応ガスが供給される第2処理領域P2との間に位置する分離領域Dと、容器の中央に位置し、一の面に沿って第1分離ガスを吐出する吐出孔を有する中央領域Cと、排気口62とを備える。分離領域Dは、第2分離ガスを供給する分離ガス供給部41と、第2分離ガスが回転方向に対し両方向に流れる狭隘な空間をサセプタ2上に形成する天井面とを含む。 (もっと読む)


【課題】 化学量論的に窒素に対しシリコンが過剰な窒化シリコン膜を形成する。
【解決手段】 CVD反応が生じる条件下で基板に対してジクロロシランを供給して、基板上に数原子層以下のシリコン膜を形成する工程と、ノンプラズマの雰囲気下で基板に対してアンモニアを供給して、シリコン膜のアンモニアによる窒化反応が飽和しない条件下でシリコン膜を熱窒化する工程と、を交互に繰り返すことで、化学量論的に窒素に対しシリコンが過剰な窒化シリコン膜を形成する。 (もっと読む)


【課題】薄い絶縁物の分子層で覆われたSi基板表面にCVD法により誘電体膜を形成する際のインキュベーション時間をなくし、得られる誘電体膜の均一性を向上させると同時に、誘電体膜の膜厚方向の組成を制御する。
【解決手段】Si基板上への誘電体膜の形成方法は、前記Si基板上に第一の金属の気相分子化合物を実質的に一様に吸着させ、前記Si基板上を前記第一の金属の気相分子化合物により覆う第一の工程と、前記Si基板を覆う前記第一の金属の気相分子化合物を酸化雰囲気中で分解し、前記Si基板上に前記第一の金属を含む第一の誘電体分子層を形成する第二の工程と、前記Si基板上に第二の金属の気相分子化合物を実質的に一様に吸着させ、前記Si基板上を前記第二の金属の気相分子化合物により覆う第三の工程と、前記Si基板を覆う前記第二の金属の気相分子化合物を酸化雰囲気中で分解し、前記第一の誘電体分子層上に前記第二の金属を含む第二の誘電体分子層を形成する第四の工程と、を含む (もっと読む)


原子層を基板(6)の表面(4)に堆積させるための装置(2)。装置(2)は前駆体注入ヘッド(10)を含み、前駆体注入ヘッド(10)は前駆体供給部(12)と、使用時に前駆体注入ヘッド(10)と基板表面(4)とに界接する堆積空間(14)とを備える。前駆体注入ヘッド(10)は、基板表面(4)に接触させる前駆体ガスを前駆体供給部(12)から堆積空間(14)に注入するように構成される。装置(2)は、堆積空間(14)と基板(6)との間の相対運動を基板表面(4)の平面で行うように構成される。装置(2)には、注入された前駆体ガスを基板表面(4)に隣接した堆積空間(14)に閉じ込めるように構成された閉じ込め構造(26)が設けられる。 (もっと読む)


【課題】半導体装置の製造方法において、絶縁膜の誘電率を低く維持すると共に、半導体装置の信頼性を高めること。
【解決手段】シリコン基板1の上方に層間絶縁膜29を形成する工程と、層間絶縁膜29に配線溝29aを形成する工程と、層間絶縁膜29の上面と配線溝29aの中とに導電膜27を形成する工程と、導電膜27を研磨することにより、層間絶縁膜29の上面から導電膜27を除去すると共に、配線溝29aの中に導電膜27を残す工程と、導電膜27の表面を還元性プラズマに曝す工程と、導電膜27の表面にシリサイド層34を形成する工程と、シリサイド層34の表面に窒化層36を形成する工程と、炭素を含むガス又は液に層間絶縁膜29の上面を曝す工程と、層間絶縁膜29の上面に紫外線を照射する工程と、導電膜27の上にバリア絶縁膜40を形成する工程とを有する半導体装置の製造方法による。 (もっと読む)


【課題】Bulk Fin構造の製造に於いて、ハードマスクの側面の後退・破損を発生させること無く、パッド酸化膜のサイドエッチ量を最小限度にとどめて、ゲート加工等の後工程を行うに際して良好な形状を有するFin構造を実現する。
【解決手段】シリコン基板1上に、所定の間隔SDを隔てて配列し且つ各々が所定の方向へ延在すると共に、所定の高さDを有する複数のシリコン柱体1Fを形成する。その際に、各シリコン柱体1Fの上面には、パッド酸化膜2及びハードマスク3が順次に形成される。その後、酸素ガス、アルゴンガス、水素ガス及びシリコンガスをベースとなる反応ガスとして用いるPVD法によって、隣り合うシリコン柱体1Fによって形成されるリセス1Rを完全に充填すると共に、リセス1Rの上方及びハードマスク3の上方にまで至る埋め込み酸化膜5を堆積する。この堆積時に、幅Wのハードマスク3の側面は削除されない。 (もっと読む)


161 - 180 / 411