説明

Fターム[5F102FA03]の内容

接合型電界効果トランジスタ (42,929) | 目的、効果 (2,241) | ソース・ドレイン抵抗、コンタクト抵抗の低減 (386)

Fターム[5F102FA03]に分類される特許

141 - 160 / 386


基板(120)、基板の上のIII族窒化物層(102、104,406)、及び、III族窒化物層の上の電気的コンタクト(108a、108b)を含む装置。電気的コンタクトは、導電性材料の複数層(110〜116)を有するスタックを含み、スタック内の前記層の少なくとも1つがゲルマニウムを含む。スタック内の層は、アルミニウム銅を含むコンタクト層(116)を含み得る。スタックは、チタン又はチタン合金層、アルミニウム又はアルミニウム合金層、及び、ゲルマニウム又はゲルマニウム合金層、を含み得る。スタック内の少なくとも1つの層は、約1%から約5%の間のゲルマニウム含有量を有するアルミニウム又はチタン合金を含み得る。

(もっと読む)


【課題】DモードとEモードの素子を組み合わせた半導体装置およびその製造方法を提供する。
【解決手段】DモードとEモードのJFETにおけるチャネル領域を設定する場所にそれぞれ凹部2aと凸部2bを備えることで、同一基板上に厚みが異なるn型チャネル層3を形成する。そして、このような厚みが異なるn型チャネル層3によってDモードとEモードで作動するJFETを同一基板上に備えることができるため、SiCでもDモードとEモードのJFETを組み合わせたSiC半導体装置を実現することが可能となる。 (もっと読む)


【課題】オーミック電極とオーミックリセス部とのコンタクト抵抗を低減した窒化物半導体素子および窒化物半導体素子の製造方法を提供する。
【解決手段】窒化物半導体素子400は、基板401上に形成された第1の窒化物半導体層402と、第1の窒化物半導体層402上に形成され、第1の窒化物半導体層402と比べてバンドギャップが大きい第2の窒化物半導体層403と、少なくとも第2の窒化物半導体層403に形成されたオーミックリセス部405と、オーミックリセス部405に接触して設けられたオーミック電極407とを備え、オーミックリセス部405は、オーミック電極407と接触する面の少なくとも一部に凹凸構造を有する。 (もっと読む)


【課題】高い信頼性を得ることができる化合物半導体装置及びその製造方法を提供する。
【解決手段】窒化物半導体層1上に、高融点金属を含む第1の導電膜3を形成する。第1の熱処理を行うことにより、第1の導電膜3と窒化物半導体層1とを反応させて高融点金属の窒化物層4を形成すると共に、窒化物半導体層1の表面に窒素空孔を生じさせる。第1の導電膜2上に、Alを含有する第2の導電膜3を形成する。第2の熱処理を行うことにより、第2の導電膜3中のAl原子を窒化物半導体層1の表面まで拡散させる。 (もっと読む)


【課題】 GaN基板上に結晶成長する各半導体層の平坦性が、半導体素子の寸法相当において向上した半導体基板を提供し、更には、この半導体基板を基礎として、特性の高性能化された半導体発光素子、半導体素子を提供する。
【解決手段】基板11と、この基板11上に積層された窒化物系III−V族化合物半導体単結晶層12と、基板11と窒化物系III−V族化合物半導体単結晶層12との間に設けられた、不純物元素を5x1017cm-3以上2x1019cm-3以下含有する層10とを備える。 (もっと読む)


【課題】ゲートリーク電流を抑制する、窒化物半導体からなるリセスゲート構造のヘテロ接合FET及びその製造方法を提供することを目的とする。
【解決手段】本発明のヘテロ接合電界効果トランジスタは、窒化物半導体からなるヘテロ接合電界効果トランジスタであって、バリア層4とバリア層4の上に形成されたキャップ層5を含む半導体層と、半導体層に下部を埋没するようにして半導体層上に設けられたゲート電極9と、ゲート電極9の側面と半導体層の間に設けられた絶縁膜10と、を備え、ゲート電極9は、下面のみが半導体層と接触することを特徴とする。 (もっと読む)


【課題】本発明は、化合物半導体素子の動作に関係なく、リーク電流を防止することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】化合物半導体装置1は、2DEG310を有する第1の化合物半導体層31と、第1の化合物半導体層31上に配設され、キャリア供給層として機能する第2の化合物半導体層32と、2DEG310上に配設された第1の電極61と、2DEG310上において第1の電極61から離間して配設された第2の電極42と、を備えた化合物半導体素子10と、化合物半導体素子10の周囲を取り囲む領域の一部において2DEG310上に配設され、この2DEG310のキャリア濃度を低減させる外周電極62を有する外周領域11とを備える。 (もっと読む)


【課題】オーミック電極のオーミックコンタクト抵抗を確実に低減させる。
【解決手段】各オーミック電極3、4は、GaNキャップ層26表面のリセス28周辺部位に接触する第1電極51と、第1電極51に接触して、リセス28を介して2次元電子ガス層27に及ぶ第2電極52とを有している。第1電極51は、リセス28の開口部を囲む環状のものである。第2電極52は、第1電極51に重なる頭部52a、及びリセス28内に形成された柱状部52bからなる。第1及び第2電極51、52を第1及び第2温度でそれぞれ熱処理しているので、第1及び第2電極51、52のオーミックコンタクト抵抗を共に低減させ、各オーミック電極3、4そのもののオーミックコンタクト抵抗を低減させることができる。 (もっと読む)


【課題】パワートランジスタに適用可能なノーマリオフ型の窒化物半導体装置に生じる電流コラプスを抑制できるようにする。
【解決手段】窒化物半導体装置は、サファイアからなる基板11と、該基板11の上に形成されたGaNからなるチャネル層13と、該チャネル層13の上に形成され、該チャネル層13よりもバンドギャップエネルギーが大きいAlGaNからなるバリア層14と、該バリア層14の上に形成され、p型AlGaN層15及びp型GaN層16を含むp型窒化物半導体層と、該p型窒化物半導体層の上に形成されたゲート電極19と、該ゲート電極19の両側方の領域にそれぞれ形成されたソース電極17及びドレイン電極18とを有している。p型窒化物半導体層は、ゲート電極19の下側部分の厚さが該ゲート電極19の側方部分の厚さよりも大きい。 (もっと読む)


【課題】窒化物半導体による分極接合を用いた半導体素子において、高い歩留まりで高性能な素子を作製する。
【解決手段】InGa1−aNチャネル層9、AlInGa1−x−yNバリア層10、およびInGa1−bNキャップ層11により分極接合を形成する(0≦a、b、c<0.02)。また、上記バリア層の膜厚T及びAl組成xは、41<T<310(単位:nm)、0.08≦x<0.12、又は30<T<150、0.12≦x<0.16、又は24<T<92、0.16≦x<0.20、又は19<T<62、0.20≦x<0.24、又は16<T<45、0.24≦x<0.28、又は14<T<34、0.28≦x<0.32、又は12<T<27、0.32≦x<0.36、又は11<T<22、0.36≦x<0.40のいずれかの範囲にある。 (もっと読む)


【課題】ゲートリセス構造を採用してノーマリーオフ動作を可能とするも、バラツキの小さい安定した閾値を有し、十分な高耐圧を実現する信頼性の高い化合物半導体装置を実現する。
【解決手段】電子走行層3と電子供給層4との間にi−AlNからなる中間層5を形成し、キャップ構造7上のゲート電極の形成予定部位に中間層5をエッチングストッパとして用いて開口11aを形成した後、中間層5の開口11aに位置整合する部位に熱リン酸を用いたウェットエッチングにより開口11bを形成して、開口11a,11bからなる開口11をゲート絶縁膜12を介して下部が埋め込み、上部がキャップ構造7上方に突出するゲート電極13を形成する。 (もっと読む)


【課題】高いチャネル移動度を有する電界効果トランジスタを提供する。
【解決手段】ゲート絶縁層と、前記ゲート絶縁層に接する第1半導体結晶層と、第1半導体結晶層に格子整合または擬格子整合する第2半導体結晶層とを有し、前記ゲート絶縁層、前記第1半導体結晶層および前記第2半導体結晶層が、ゲート絶縁層、第1半導体結晶層、第2半導体結晶層の順に配置されており、前記第1半導体結晶層がInx1Ga1−x1Asy11−y1(0<x1≦1、0≦y1≦1)であり、前記第2半導体結晶層がInx2Ga1−x2Asy21−y2(0≦x2≦1、0≦y2≦1、y2≠y1)であり、前記第1半導体結晶層の電子親和力Ea1が前記第2半導体結晶層の電子親和力Ea2より小さい電界効果トランジスタを提供する。 (もっと読む)


【課題】ノーマリオフ特性を実現する高電子移動度トランジスタを提供する。
【解決手段】チャネル層25が第1のバリア層27上に設けられると共に第1のバリア層27と第1のヘテロ接合33を成す。また、チャネル層25は圧縮歪みを内包して、チャネル層25のピエゾ電界PZC2は支持基体13から第1のバリア層27への方向に向く。第1のヘテロ接合33がIII族窒化物領域23のc軸方向に対して40度以上85度以下及び140度以上180度未満の角度範囲の傾斜角αで傾斜した基準軸ベクトルに垂直な平面に沿って延在するとき、ゲート電極19直下におけるチャネル層25におけるピエゾ電界PZC2の大きさをc面上のトランジスタにおけるピエゾ電界の大きさに比べて小さくできて、有限な大きさのピエゾ電界を残しながらノーマリオフ特性が実現される。 (もっと読む)


【課題】 窒化物半導体に対するコンタクト抵抗が低い電極を有する半導体装置の製造方法を提供する。
【解決手段】 窒化物半導体層上に炭素を含有する炭素含有層を形成する炭素含有層形成工程S4と、炭素含有層上にチタンを含有するチタン含有層を形成するチタン含有層形成工程S6を有する半導体装置の製造方法。チタン含有層と窒化物半導体層との間にTiNとTiCの全率固溶体Ti(C,N)の層が形成される。これにより、チタン含有層が、その境界部全体で窒化物半導体層に対してオーミック接続される。 (もっと読む)


【課題】高電圧を印加しても壊れにくい電界効果トランジスタを提供する。
【解決手段】電界効果トランジスタは、基板1、チャネル層3及びバリア層4と、バリア層4上にこの順で離間して設けられたソース電極6、ゲート電極7およびドレイン電極8とを備え、ソース電極6の直下に第1のn型不純物拡散領域12が設けられ、ドレイン電極8の直下に第2のn型不純物拡散領域13が設けられ、第2のn型不純物拡散領域の下側の前記チャネル層3および第2のn型不純物拡散領域の前記ゲート電極側の前記チャネル層3および前記バリア層4に第3のn型不純物拡散領域15が設けられる。第3のn型不純物拡散領域15は第2のn型不純物拡散領域13よりも低いn型不純物濃度を有し、ゲート電極とドレイン電極との間に電圧が印加されたときバリア層4およびチャネル層3においてその絶縁破壊強度を超える電界集中が生じることを抑制する。 (もっと読む)


【課題】十分に大きな電流密度を得ることができるノーマリオフ型の窒化物半導体からなる電界効果トランジスタ及びその製造方法を提供する。
【解決手段】基板101上にAlNバッファ層102、アンドープGaN層103、アンドープAlGaN層104、p型GaN層105、高濃度p型GaN層106が順に形成され、ゲート電極111が高濃度p型GaN層106とオーミック接合する。アンドープAlGaN層104の上にはソース電極109及びドレイン電極110が設けられる。アンドープAlGaN層104とアンドープGaN層との界面で発生する2次元電子ガスとp型GaN層105とによって生じるpn接合がゲート領域に形成されるのでゲート電圧を大きくすることができる。 (もっと読む)


【課題】高周波動作や広帯域化が可能な増幅器の実現ができるGaNを使用した、HEMT(高電子移動度トランジスタ)のソース、ドレイン間寄生容量を低減できる半導体装置及びその製造方法を提供する。
【解決手段】電子が走行するGaNバッファ層2と、バッファ層上に形成された、2次元電子ガスを形成するAlGaNバリア層3と、バリア層上のゲート電極8、ソース電極6、ドレイン電極7を有するHEMTにおいて、ソース電極6とドレイン電極7の下部に形成した高濃度不純物領域4と、高濃度不純物領域4の下部に形成され、当該高濃度不純物領域4より不純物濃度が低い低濃度不純物領域5とを備えた。 (もっと読む)


【課題】オーミックコンタクト特性が優れており、かつ、良好なデバイス特性を有する半導体素子を実現することができるエピタキシャル基板を提供する。
【解決手段】下地基板の上に、少なくともAlとGaを含む、Inx1Aly1Gaz1N(x1+y1+z1=1)なる組成の第1のIII族窒化物からなるチャネル層を形成し、チャネル層の上に、少なくともInとAlを含む、Inx2Aly2Gaz2N(x2+y2+z2=1)なる組成の第2のIII族窒化物からなる障壁層を、表面近傍部におけるIn組成比が表面近傍部以外の部分におけるIn組成比よりも大きくなるように形成する。 (もっと読む)


【課題】 窒化物半導体表面の自然酸化や熱処理による表面劣化を防止し、良好なショットキー特性を有する半導体装置を提供する。
【解決手段】 基板101に、不純物を積極的に注入することなく形成されたGaN緩衝層102、GaN緩衝層102よりもバンドギャップが大きい第2の窒化物半導体を材料とするAlxGayIn1-x-yN障壁層103、AlxGayIn1-x-yN障壁層103の上面にあって、この上面にオーミックコンタクトするソース電極105、ドレイン電極107、ソース電極105、ドレイン電極107の間に設けられたゲート電極106を形成して半導体装置製造する。そして、ゲート電極106を、第2の窒化物半導体よりも小さなバンドギャップを有するn型不純物が積極的に注入された高濃度n型GaaIn1-aNゲート電極106a、ゲート電圧伝送用電極106bによって構成する。 (もっと読む)


【課題】 ゲート電極下部のダメージを低減することによって高いデバイス特性が得られることができる半導体装置の製造方法を提供する。
【解決手段】 基板101上にGaN緩衝層102を形成する工程と、GaN緩衝層102上にun−AlGaN障壁層103を形成する工程と、un−AlGaN障壁層103上に再成長用マスク110を形成する工程と、un−AlGaN障壁層103上に、n−InAlNコンタクト層109を再成長させる工程と、un−AlGaN障壁層103上の再成長用マスク110を除去する工程と、n−InAlNコンタクト層109上にソース電極107及びドレイン電極108を形成する工程と、再成長用マスク110が除去されたun−AlGaN障壁層103上の領域に、ゲート電極106を形成する工程と、によって半導体装置を製造する。 (もっと読む)


141 - 160 / 386