説明

Fターム[5F102FA03]の内容

接合型電界効果トランジスタ (42,929) | 目的、効果 (2,241) | ソース・ドレイン抵抗、コンタクト抵抗の低減 (386)

Fターム[5F102FA03]に分類される特許

121 - 140 / 386


【課題】 アクセス抵抗およびオン抵抗が低いIII族窒化物半導体素子、III族窒化物半導体素子の製造方法、および電子装置を提供する。
【解決手段】
障壁層902は、チャネル層901上方にヘテロ接合され、
チャネル層901の上部の一部およびその上方の障壁層902が除去されて凹部が形成され、
チャネル層901および障壁層902の一部にn型導電層領域904が形成され、
n型導電層領域904は、前記凹部の表面を含み、
n型導電層領域904の深さTimpが、n型導電層領域904表面の各部から前記表面と垂直方向の測定値で15nm以上であり、
オーミック電極906および907は、前記凹部の表面を介して前記n型導電層領域にオーミック接触していることを特徴とする、III族窒化物半導体素子。 (もっと読む)


【課題】高い移動度、低いオン抵抗を備えたノーマリオフ型の電界効果トランジスタを提供する。
【解決手段】III族窒化物系化合物半導体からなるチャネル層104と、前記チャネル層上に形成されたAlInGaNからなる界面層106と、前記界面層上に形成され、前記界面層に達するリセス部を備えたIII族窒化物系化合物半導体からなる電子供給層108と、前記リセス部を挟んで、前記電子供給層108上に形成されたソース電極110およびドレイン電極112と、前記リセス部の内表面に形成された絶縁膜120と、前記絶縁膜上に形成されたゲート電極114とを備える。 (もっと読む)


【課題】 高い閾値電圧と、低いオン抵抗とを両立可能であり、かつ、パラレル伝導を抑制できる電界効果トランジスタを提供する。
【解決手段】
基板601上に、III族窒化物のバッファ層602、チャネル層603、障壁層605、およびキャップ層606が、前記順序で積層され、
各半導体層の上面は、(0001)結晶軸に垂直なIII族原子面であり、
バッファ層602は、格子緩和され、
障壁層605は、引っ張り歪みを有し、
チャネル層603およびキャップ層606が圧縮歪みを有するか、または、チャネル層603が格子緩和され、キャップ層606が引っ張り歪みを有し、
障壁層605上の一部の領域に、キャップ層606、ゲート絶縁膜607、およびゲート電極608が、前記順序で積層され、他の領域に、ソース電極609とドレイン電極610が形成されていることを特徴とする電界効果トランジスタ。 (もっと読む)


【課題】安定に動作する双方向スイッチ素子を実現できるようにする。
【解決手段】双方向スイッチ素子は、窒化物半導体からなる半導体層積層体203と、半導体層積層体203の上に形成された第1のオーミック電極211及び第2のオーミック電極212と、第1のゲート電極217及び第2のゲート電極218とを備えている。第1のゲート電極217は、第1のオーミック電極211と電位が実質的に等しい第1のシールド電極221に覆われている。第2のゲート電極218は、第2のオーミック電極212と電位が実質的に等しい第2のシールド電極222に覆われている。第1のシールド電極221の端部は、第1のゲート電極217よりも第2のゲート電極218側に位置し、第2のシールド電極222の端部は、第2のゲート電極218よりも第1のゲート電極217側に位置している。 (もっと読む)


【課題】本発明は、高い信頼性を有するオーミック電極を備えた化合物半導体装置及びその製造方法を提供することを目的とする。
【解決手段】実施形態によれば、窒化物半導体層と、この窒化物半導体層上に設けられたオーミック電極と、を備え、前記オーミック電極は、前記窒化物半導体層との間で金属窒化物を形成する金属を含む第1電極層と、前記第1電極層上に設けられた、アルミニウム(Al)を含む第2電極層と、前記第2電極層の外面を被覆し、かつタングステン(W)を含む第3電極層と、前記第3電極層の外面を被覆し、かつ金(Au)を含む第4電極層と、を有することを特徴とする化合物半導体装置が提供される。 (もっと読む)


【課題】縦型半導体装置の電流経路の低抵抗化を図る。
【解決手段】半導体装置1は、基板2の上方に形成された、電子ドリフト層4、電子ブロック層5、電子走行層6及び電子供給層7を含む。電子走行層6及び電子供給層7には、電子走行層6内に2DEG16が生成される材料が用いられる。電子ブロック層5には、その開口部9に、絶縁膜10を介してゲート電極11が形成され、電子供給層7には、ソース電極13が接続される。基板2の裏面には、ドレイン電極15が接続される。 (もっと読む)


【課題】本発明の半導体装置は、nチャネルの高電子移動度トランジスタ(HEMT)とpチャネル電界効果トランジスタとを単一の基板上に形成した。
【解決手段】nチャネル電界効果トランジスタは、第1チャネル層7と、この第1チャネル層7にヘテロ接合し、n型の電荷を供給するn型第1障壁層6と、n型第1障壁層6に対してpn接合型の電位障壁を有するp型ゲート領域10とを備え、pチャネル電界効果トランジスタは、p型の第2チャネル層13と、pn接合型の電位障壁を有するn型ゲート領域18とを備える。各トランジスタはpn接合型のゲート領域を有するのでターンオン電圧を高くすることが可能となり、ゲート逆方向リーク電流を減少させたエンハンスメントモードでの動作を実現した。 (もっと読む)


【課題】製造工程において高温で短時間のアニールを可能にすることにより、イオン注入の工程が不要なAlGa1−xN/AlGa1−yNヘテロ接合のオーミック電極を備える電子デバイスを提供する。
【解決手段】
電子デバイスは、ワイドバンドギャップ化合物半導体層と、前記ワイドバンドギャップ化合物半導体層上に形成されるオーミック電極とを含む電子デバイスであって、前記ワイドバンドギャップ化合物半導体層は、InAlGaN(i+j+k=1,0≦i≦1,0<j≦1,0≦k<1)からなる化合物半導体バリア層とAlGa1−yN(0<y≦1)からなる化合物半導体チャネル層からなり、前記オーミック電極は、前記化合物半導体バリア層上に密着層が積層され、前記密着層上にオーミック層が積層されて形成された電極であり、前記密着層はZrからなるようにする。 (もっと読む)


【課題】 窒化物半導体デバイスを提供する。
【解決手段】 一実施形態では、デバイスはIII族窒化物チャネル層(3)とIII族窒化物チャネル層(3)上のIII族窒化物障壁層(4)とを含み、III族窒化物障壁層(4)は第1部分(4−1)と第2部分(4−2)とを含み、第1部分(4−1)は第2部分(4−2)より薄い厚さを有する。pドープIII族窒化物ゲート層部(5)は、III族窒化物障壁層(4)の少なくとも第1部分(4−1)上に配置され、ゲートコンタクト(10)はpドープIII族窒化物ゲート層部(5)上に形成される。 (もっと読む)


【課題】デバイス特性を維持し、ゲートリーク電流を低減できる電界効果トランジスタ及びその製造方法を提供する。
【解決手段】本発明に係る電界効果トランジスタ100は、III−V族窒化物半導体層構造と、半導体層構造上に離間して形成されたソース電極105及びドレイン電極106と、ソース電極105及びドレイン電極106の間に形成されたゲート電極108と、ソース電極105上及びドレイン電極106上に形成された電極保護膜107と、半導体層構造上に、ソース電極105、ドレイン電極106、ゲート電極108及び電極保護膜107の上面の少なくとも一部を覆うように形成され、半導体層構造を保護する第1のパッシベーション膜109を備え、第1のパッシベーション膜109は、所定の材料に対して化学的に活性であり、電極保護膜107は、所定の材料に対して化学的に不活性な金属である。 (もっと読む)


【課題】III族窒化物トランジスタのドレイン及びソース接点と、下位のドレイン及びソース領域の各々との間の抵抗を低減させる。
【解決手段】ゲート、ソース、及びドレイン領域上に延在するフィールド誘電体240にトレンチをエッチングする工程と、ゲート、ソース、及びドレイン領域上にゲート誘電体270を形成する工程と、ゲート誘電体上270にブランケット拡散バリア272を形成する工程と、ソース及びドレイン領域からブランケット拡散バリア272を除去する工程と、ゲート誘電体270をソース及びドレイン領域から除去し、ソース及びドレイン領域をほぼ露出させる工程とを含む。次いで、ソース及びドレイン領域に接点金属290を堆積することにより、オーミック接点を形成する。 (もっと読む)


【課題】イオン注入したダイヤモンドの高温高圧アニールにより起こるダイヤモンド表面のエッチングを防ぎ、従来の方法では得られない高品質P型、N型ダイヤモンド半導体を得るダイヤモンド半導体の作製方法を提供すること。
【解決手段】ダイヤモンド基板5−11を用意し、そのダイヤモンド基板5−11上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとして基板温度700℃でダイヤモンド薄膜5−12を1μm積層する。上記ダイヤモンド薄膜5−12にイオン注入装置を用い、加速電圧60kV、ドーズ量1×1014cm−2でドーパントを打ち込む。その後、イオン注入ダイヤモンド薄膜5−13上に保護層(白金)5−14を形成する。表面に保護層5−14が形成されたイオン注入ダイヤモンド薄膜5−13を、超高温高圧焼成炉内に配置し、3.5GPa以上、600℃以上の圧力、温度下でアニールする。 (もっと読む)


【課題】インバータ等に適用される半導体デバイスとして双方向デバイスを適用した場合に、意図しない過渡期における各部の過電流や過電圧の発生を未然に防止して、低損失なゲート駆動方法を提供することを目的としている。
【解決手段】第一ゲート端子2、第二ゲート端子3、ドレイン端子4、ソース端子5を備え、第一ゲート端子2、第二ゲート端子3を各オンオフすることで4つの動作モードを有する双方向スイッチ1に適用する駆動方法であり、双方向にオフ状態から双方向にオン状態へと移行する際に、直接移行しないように制御する制御手段を備え、双方向にダイオードを介在させない動作モードで主として動作し、過渡期においてはダイオードを介する動作が可能なため、低損失かつ各部の過電圧、過電流を防止できる効果が得られる。 (もっと読む)


半導体デバイスを形成する方法であって、この方法は、半導体層を準備するステップと、半導体層上に第1の金属の第1の層を準備するステップとを含む。第1の金属の第1の層上に第2の層を準備することができる。第2の層は、シリコン層及び第2の金属の層を含むことができ、第1の金属及び第2の金属は異なり得る。第1の金属はチタンとすることができ、第2の金属はニッケルとすることができる。関連するデバイス、構造体、及び他の方法もまた説明される。 (もっと読む)


【課題】窒化物半導体を用いたヘテロ構造電界効果トランジスタにおいて、オーミック接触抵抗を大きく低減し、同時に、ソース電極2からチャネルまでの抵抗(アクセス抵抗)を大きく低減し、その結果として、高速化および低損失化(低消費電力化)が可能となる半導体装置およびその作製法提供すること。
【解決手段】ソース電極2とドレイン電極4とに、それぞれオーミック接触し、チャネル層窒化物半導体よりも小さいバンドギャップを有する再成長窒化物半導体(2)と、前記チャネル層窒化物半導体との間を、再成長組成傾斜窒化物半導体(1)を介して接続することによって、ソース電極2とチャネルとの間、および、ドレイン電極4とチャネルとの間を、それぞれ結ぶ電路中の半導体バンドギャップの不連続が解消されていることを特徴とするヘテロ構造電界効果トランジスタを構成する。 (もっと読む)


半導体へテロ構造内に形成されたデバイスへの低抵抗自己整合コンタクトを供する方法が開示されている。当該方法はたとえば、III-V族及びSiGe/Ge材料系において作製される量子井戸トランジスタのゲート、ソース、及びドレイン領域へのコンタクトを形成するのに用いられてよい。ゲートへのソース/ドレインコンタクト間に比較的大きな空間を生成してしまう従来のコンタクト作製処理の流れとは異なり、当該方法により供されたソースとドレインのコンタクトは自己整合され、各コンタクトは、ゲート電極に対して位置合わせされ、かつ、スペーサ材料を介して前記ゲート電極から分離される。
(もっと読む)


【課題】パワートランジスタに適用可能なノーマリオフ型の窒化物半導体装置に生じる電流コラプスを抑制できるようにする。
【解決手段】窒化物半導体装置は、サファイアからなる基板11と、該基板11の上に形成されたGaNからなるチャネル層13と、該チャネル層13の上に形成され、該チャネル層13よりもバンドギャップエネルギーが大きいAlGaNからなるバリア層14と、該バリア層14の上に形成され、p型AlGaN層15及びp型GaN層16を含むp型窒化物半導体層と、該p型窒化物半導体層の上に形成されたゲート電極19と、該ゲート電極19の両側方の領域にそれぞれ形成されたソース電極17及びドレイン電極18とを有している。p型窒化物半導体層は、ゲート電極19の下側部分の厚さが該ゲート電極19の側方部分の厚さよりも大きい。 (もっと読む)


III-V族半導体装置における導電性の改善について示した。第1の改良は、チャネル層とは幅の異なるバリア層を有することである。第2の改良は、金属/Si、Ge、またはシリコン-ゲルマニウム/III-Vスタックの熱処理により、Siおよび/またはゲルマニウムドープIII-V層に、金属-シリコン、金属-ゲルマニウム、または金属-シリコンゲルマニウム層を形成することである。次に、金属層が除去され、金属-シリコン、金属-ゲルマニウム、または金属シリコンゲルマニウム層上に、ソース/ドレイン電極が形成される。第3の改良は、III-Vチャネル層上に、IV族元素および/またはVI族元素の層を形成し、熱処理し、III-Vチャネル層に、IV族および/またはVI族化学種をドープすることである。第4の改良は、III-V装置のアクセス領域に形成された、パッシベーション層および/またはダイポール層である。
(もっと読む)


【課題】同一のボンディングパッドに対して異なる金属のボンディングワイヤーを用いて信頼性の高い配線を行う。
【解決手段】窒化物半導体ヘテロ接合型電界効果トランジスタにおけるソース電極8,ドレイン電極9,ソースパッド8'およびドレインパッド9'をTi,Al,MoおよびAuを順次積層して形成し、ソースパッド8'およびドレインパッド9'の一部をエッチングによって開口して、Al露出部を形成している。したがって、ソースパッド8'またはドレインパッド9'におけるAu露出部に対しては、Auボンディングワイヤーを用いたワイヤーボンディングを行う一方、上記Al露出部に対しては、Alボンディングワイヤーを用いたワイヤーボンディングを行うことによって、優れた密着性とエレクトロマイグレーション耐性を得ることができる。 (もっと読む)


【課題】 二次元電子ガスを高効率に生成させることができ、かつコンタクト抵抗の抵抗値が小さな電界効果トランジスタを提供することである。
【解決手段】 電界効果トランジスタ10においてスペーサ層13は、チャネル層12のバンドギャップよりも大きなバンドギャップを有する。第1電子供給層14は、厚み方向一方Z1に向かうにつれて、アルミニウム存在比が連続的に大きくなる組成に設定される。第2電子供給層15は、第1電子供給層14におけるアルミニウム存在比の最大値以上のアルミニウム存在比に設定される。 (もっと読む)


121 - 140 / 386