説明

Fターム[5F102FA03]の内容

接合型電界効果トランジスタ (42,929) | 目的、効果 (2,241) | ソース・ドレイン抵抗、コンタクト抵抗の低減 (386)

Fターム[5F102FA03]に分類される特許

41 - 60 / 386


【課題】高耐圧及び高電流の動作が可能な半導体素子及びその製造方法を提案する。
【解決手段】内部に2次元電子ガス(2DEG)チャンネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50の方向に突出した多数のパターン化された突起61を備え、内部に窒化物半導体層30にオーミック接合されるオーミックパターン65を含むソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上に、且つ、パターン化された突起61を含んでソース電極60上の少なくとも一部に亘って形成された誘電層40と、一部が、誘電層40を間に置いてソース電極60のパターン化された突起61部分及びドレイン方向のエッジ部分の上部に形成されたゲート電極70と、を含んでなる。 (もっと読む)


【課題】オン抵抗が低く、かつ、Vthが高い半導体装置を提供する。
【解決手段】基板102の上方に、III−V族化合物半導体で形成されたバックバリア層106と、バックバリア層106上に、バックバリア層106よりバンドギャップエネルギーが小さいIII−V族化合物半導体で形成され、バックバリア層106の上方の少なくとも一部に設けられたリセス部122において、他の部分より膜厚が薄いチャネル層108と、チャネル層108にオーミック接合された第1の電極116,118と、少なくともリセス部においてチャネル層の上方に形成された第2の電極120と、を備える半導体装置を提供する。 (もっと読む)


【課題】FETのソース領域にショットキー電極を形成し、内部にオミックパターン電極を備え、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフ動作すると共に高耐圧及び高電流で動作可能な、半導体素子及び製造方法を提供する。
【解決手段】内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50と離間され、窒化物半導体層30にショットキー接合されるソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上及びソース電極60の少なくとも一部上にかけて形成された誘電層40と、ドレイン電極50と離間されるように誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上部に形成されたゲート電極70とを含む。 (もっと読む)


【課題】横方向からのノイズに対するトランジスタ動作の影響を抑制する。
【解決手段】GaNを用いたHEMTが形成されたチップ30と、前記チップを搭載する導電性のステージ11と、前記ステージと前記HEMTのソースとに電気的に接続されたソースリード12と、前記HEMTのゲートに電気的に接続されたゲートリード14と、前記HEMTのドレインに電気的に接続されたドレインリード13と、を具備し、前記ソースリード、前記ドレインリードおよび前記ゲートリードの順に配列されている半導体装置。 (もっと読む)


【課題】低シート抵抗化、リーク電流の低減、および、オーミック電極の接触抵抗の低減を実現する。
【解決手段】基板と、基板上に設けられ第1の窒化物系化合物半導体からなるチャネル層と、チャネル層上に設けられたバリア層と、バリア層上に設けられた第1電極と、チャネル層の上方に設けられた第2電極とを備え、バリア層は、チャネル層上に設けられ第1の窒化物系化合物半導体よりバンドギャップエネルギーが大きい第2の窒化物系化合物半導体からなる障壁層と、第2の窒化物系化合物半導体よりバンドギャップエネルギーが小さい第3の窒化物系化合物半導体からなり量子準位が形成された量子準位層とを有する半導体デバイスを提供する。 (もっと読む)


【課題】窒化物半導体を用いた半導体装置のオン抵抗を低減できるようにする。
【解決手段】半導体装置は、アンドープのAlGaN層104と、該AlGaN層104の上に形成され、AlGaN層104とオーミック接触するソース電極107及びドレイン電極108とを有している。AlGaN層104の上部における少なくとも各電極107、108と接触する部分には、不純物拡散層110が形成されている。不純物拡散層110は、AlGaN層104に対しアクセプタ性を示す不純物が拡散し、且つ、AlGaN層104における窒素空孔と不純物とが結合してなる不純物準位が、AlGaN層104の伝導帯端の近傍に形成される。 (もっと読む)


【課題】良好なオン特性を維持したまま、逆方向バイアスに対するリーク電流を低減した半導体デバイスを得る。
【解決手段】窒化物系化合物半導体からなるチャネル形成層と、チャネル形成層上に設けられ、第1の窒化物系化合物半導体からなる第1の半導体層、および、第2の窒化物系化合物半導体からなる第2の半導体層を有する疑似混晶からなる疑似混晶層と、疑似混晶層上に設けられ、窒化物系化合物半導体からなり、チャネル形成層の多数キャリアと反対の導電型を有する導電半導体層と、導電半導体層に接する第1の電極と、チャネル形成層に電気的に接続された第2の電極と、を備える半導体デバイスを提供する。 (もっと読む)


【課題】電子移動度の低下が抑制され、かつ二次元電子ガスの閉じ込めが高められた半導体装置およびその製造方法を提供する。
【解決手段】AlaInbGa1-(a+b)N(0≦a,b≦1、0≦a+b≦1)から成り、第2の窒化物半導体層3よりもバンドギャップが大きい第1の窒化物半導体層2、AlcIndGa1-(c+d)N(0≦c,d≦1、0≦c+d≦1)から成る第2の窒化物半導体層3、IneGa1-eN(0<e≦1)から成り、第2の窒化物半導体層3よりもバンドギャップが小さいバックバリア層4、AlfIngGa1-(f+g)N(0≦f,g≦1、0≦f+g≦1)から成り、第2の窒化物半導体層3とバンドギャップが等しいチャネル層5、AlhIniGa1-(h+i)N(0≦h,i≦1、0≦h+i≦1)から成り、チャネル層5よりもバンドギャップが大きいバリア層6を、この順に基板1に積層する。 (もっと読む)


【課題】 高周波特性を確保し、サイズを小型化し、かつ製造が容易な、正孔の蓄積を解消できる、耐圧性に優れた、半導体装置等を提供する。
【解決手段】 ヘテロ接合電界効果トランジスタ(HFET:Hetero-junction Field Effect Transistor)であって、非導電性基板1上に位置する、チャネルとなる二次元電子ガス(2DEG:2 Dimensional Electron Gas)を形成する再成長層7(5,6)と、再成長層に接して位置する、ソース電極11、ゲート電極13およびドレイン電極15を備え、ソース電極11が、ゲート電極13に比べて、非導電性基板1から遠い位置に位置することを特徴とする。 (もっと読む)


【課題】平坦性が向上した半導体基板を基礎として、特性の高性能化された半導体発光素子を提供する。
【解決手段】p型電極32と、n型電極31と、p型電極32に接続され、複数のp型窒化物系III−V族化合物半導体からなるp型積層構造(16〜20)と、n型電極31に接続され、複数のn型窒化物系III−V族化合物半導体であるn型積層構造(11〜14)と、p型積層構造(16〜20)とn型積層構造(11〜14)との間に形成されたInGaNからなる多重井戸構造を備える活性層15とを備え、n型積層構造が、GaN層11と、GaN層11上に形成されたドープ層10と、ドープ層10上に設けられた窒化物系III−V族化合物半導体層12と、窒化物系III−V族化合物半導体層12よりも活性層15側に設けられた超格子層13とを含む。 (もっと読む)


【課題】窒化物半導体により、反転型のHEMTが構成された半導体装置において、半導体装置の形成を容易としつつ2DEGを効果的に形成する。
【解決手段】窒化物半導体からなる下地層15の(0001)面上に、窒化物半導体からなる電子供給層17、窒化物半導体からなる電子走行層19の順に積層され、電子走行層19における電子供給層17と反対の面上に、ゲート電極21、ソース電極23、及びドレイン電極25が設けられている。そして、電子走行層19における電子供給層17側に、二次元電子ガスが形成される。このような反転型のHEMTが構成された半導体装置10において、分極の正方向を[0001]方向とした場合、電子供給層17の自発分極とピエゾ分極の和P2が、電子走行層19の自発分極とピエゾ分極の和P1よりも大きくなっている。 (もっと読む)


【課題】高特性かつ手頃な価格の複合GaN基板およびその製造方法ならびにIII族窒化物半導体デバイスおよびその製造方法を提供する。
【解決手段】本複合GaN基板1は、比抵抗が1Ωcm未満の導電性GaN基板10と、導電性GaN基板10上に配置された比抵抗が1×104Ωcm以上で厚さが5μm以上の半絶縁性GaN層20と、を含む。本III族窒化物半導体デバイス2は、上記の複合GaN基板1と、複合GaN基板1の半絶縁性GaN層20上に配置された少なくとも1層のIII族窒化物半導体層30と、を含む。 (もっと読む)


【課題】オン抵抗が小さく、またオフ容量が低い、デュアルゲートを備えた電界効果トランジスタを提供する。
【解決手段】第1又は第2のゲート電極8は、ソース電極4側又は前記ドレイン電極5側に延びる第1のひさし部61と、第2又は第1のゲート電極8側に延びる第2のひさし部62とを有し、第2のひさし部62の長さが第1のひさし部61の長さより短い。 (もっと読む)


【課題】オン抵抗の低いストッパー層を有するIII−V族化合物半導体エピタキシャルウェハを提供する。
【解決手段】単結晶基板8上に、GaAs層、AlGaAs層からなるバッファ層9、n型不純物を含有するAlGaAs層又はInGaP層若しくはSiプレナードープ層からなる電子供給層10、InGaAs層からなるチャネル層12、ノンドープ又は低濃度n型不純物を含有するGaAs層又はAlGaAs層からなるショットキー層14、ノンドープ又は低濃度n型不純物を含有するInGaP層からなるストッパー層15、n型不純物を含有するGaAs層からなるキャップ層16を積層したHEMT構造18を有するIII−V族化合物半導体エピタキシャルウェハ17において、ストッパー層15におけるInGaP中のAsが占めるV族原子分率が15%以下であるものである。 (もっと読む)


【課題】電極材料が拡散するのを抑制し、特性の向上を実現する。
【解決手段】半導体装置を、ゲート電極3とゲート絶縁膜2との間、Al含有オーミック電極4、5とAu配線9との間、及び、ゲート電極3の下方及びAl含有オーミック電極4、5の上方、のいずれかに設けられ、第1TaN層6A、Ta層6B、第2TaN層6Cを順に積層した構造を有する電極材料拡散抑制層6を備えるものとする。 (もっと読む)


【課題】チャネル領域の低抵抗化を図りながら、ノーマリオフを実現する。
【解決手段】半導体装置を、キャリア走行層3及びキャリア供給層5を含む窒化物半導体積層構造と、窒化物半導体積層構造の上方に設けられ、活性化領域10と不活性領域10Aとを有するp型窒化物半導体層6と、p型窒化物半導体層の不活性領域上に設けられたn型窒化物半導体層7と、p型窒化物半導体層の活性化領域の上方に設けられたゲート電極13とを備えるものとする。 (もっと読む)


【課題】高耐圧特性と低オン抵抗特性とを両立した化合物半導体装置を実現する。
【解決手段】化合物半導体装置を、キャリア走行層2及びキャリア供給層3を含む窒化物半導体積層構造4と、窒化物半導体積層構造の上方に設けられたソース電極5及びドレイン電極6と、窒化物半導体積層構造の上方のソース電極とドレイン電極との間に設けられたゲート電極7と、ゲート電極とドレイン電極との間に少なくとも一部が設けられたフィールドプレート8と、窒化物半導体積層構造の上方に形成された複数の絶縁膜9、10とを備えるものとし、フィールドプレートとドレイン電極との間でゲート電極の近傍よりも複数の絶縁膜の界面の数を少なくする。 (もっと読む)


【課題】耐圧特性の低下やゲートリーク電流の増加を生じることなく、低抵抗で高速動作可能なヘテロ接合電界効果型トランジスタおよびその製造方法を提供する。
【解決手段】ヘテロ接合FETの製造方法に関し、(a)チャネル層3及びチャネル層3上に形成されたバリア層4を窒化物半導体層として準備する工程と、(b)窒化物半導体層上に不純物拡散源としてZnO膜9を形成する工程と、(c)ZnO膜9上のドレイン電極6及びソース電極5を形成すべき領域以外に酸化膜10を形成する工程と、(d)窒化物半導体層に対して熱処理を行い、酸化膜10が形成されていない領域の下部のチャネル層3及びバリア層4に選択的に、ZnO膜9からZn及びOを拡散させる工程とを備える。 (もっと読む)


【課題】トラップの影響を低減し、過渡応答を改善するトランジスタ装置及びトランジスタ装置製造方法を提供する。
【解決手段】ソース電極5とゲート電極6との間のGaNチャネル2における一部に形成された、不純物濃度が高い領域である高不純物領域13を含み、高不純物領域13は、ゲート電極6とドレイン電極7との間より不純物濃度が高い。 (もっと読む)


【課題】半導体装置に形成される絶縁膜の付着力を高め歩留りを向上させる。
【解決手段】基板10の上方に形成された半導体層20〜23と、前記半導体層20〜23上に形成された絶縁膜31,32と、前記絶縁膜上31,32に形成された電極41と、を有し、前記絶縁膜31,32は、前記電極41の側における膜応力よりも、前記半導体層20〜23の側における膜応力が低いことを特徴とする半導体装置により上記課題を解決する。 (もっと読む)


41 - 60 / 386