説明

Fターム[5F102FA03]の内容

接合型電界効果トランジスタ (42,929) | 目的、効果 (2,241) | ソース・ドレイン抵抗、コンタクト抵抗の低減 (386)

Fターム[5F102FA03]に分類される特許

21 - 40 / 386


【課題】コンタクトホールを形成するために用いられたレジスト膜を、硫酸を含むエッチング液を利用して除去することが可能なオーミック電極の形成方法を提供する。
【解決手段】積層電極部2を形成する積層電極部形成工程と、積層電極部2を熱処理するアニール工程と、熱処理後の積層電極部2を被覆部3で被覆して被覆電極部4を形成する被覆電極部形成工程と、被覆電極部4を覆うように半導体層1の表面に絶縁体膜5を形成する絶縁体膜形成工程と、被覆電極部4に対応して開口7が形成されているレジスト膜6を絶縁体膜5の表面にパターニングするレジスト膜形成工程と、レジスト膜6の開口7から露出する絶縁体膜5を除去して被覆電極部4を露出させる露出工程と、硫酸を含むエッチング液を用いてレジスト膜6を除去するレジスト膜除去工程を備えている。被覆部3の材料は、金又は白金である。 (もっと読む)


【課題】ゲートリーク電流が少なく、かつ電流コラプスが抑えられた半導体装置の提供。
【解決手段】第1の態様においては、窒化物系半導体で形成された半導体層110と、半導体層上に開口を有して設けられ、タンタル酸窒化物を含む第1絶縁膜120と、第1絶縁膜の開口において半導体層上に積層された第2絶縁膜130と、第2絶縁膜上に設けられたゲート電極140と、を備える半導体装置を提供する。ここで、第2絶縁膜は、第1絶縁膜より絶縁性が高い絶縁膜により構成される。 (もっと読む)


【課題】ダイオード部とトランジスタ部の面積比率を自由に設定することが可能な窒化物系半導体装置を提供することを目的とする。
【解決手段】第1HEMT部30及び第2HEMT部31から成るトランジスタ部1と、第1電極24と電気的に短絡された第1ショットキー電極28及び第1ゲート電極26と電気的に第2ショットキー電極29から成るダイオード部2と、を備えて構成されている。また、第1電極24と第2電極25との間の領域に第1電極24に沿って、第1ゲート電極26及び第1ショットキー電極28が交互に形成され、かつ、第2電極25に沿って、第2ゲート電極27及び第2ショットキー電極29が交互に形成されている。さらに、第1ゲート電極26と第2ゲート電極27とは、対向して形成されており、第1ショットキー電極28と第2ショットキー電極29とは対向して形成されている。 (もっと読む)


【課題】GaNトランジスタを理想的な還流ダイオードとして動作させ、低損失のスイッチ装置を実現できるようにする。
【解決手段】スイッチ装置は、窒化物半導体素子301と、窒化物半導体素子301を駆動する駆動部302とを備えている。窒化物半導体素子301は、第1のオーミック電極、第2のオーミック電極及び第1のゲート電極を有している。駆動部302は、第1のゲート電極にバイアス電圧を印加するゲート回路311と、第1のゲート電極と第1のオーミック電極との間に接続され、双方向に電流を流すスイッチ素子312とを有している。駆動部302は、第1のオーミック電極から第2のオーミック電極への電流を通電し且つ第2のオーミック電極から第1のオーミック電極への電流を遮断する動作を行う場合には、スイッチ素子312をオン状態とする。 (もっと読む)


【課題】スイッチング素子のソースおよびドレイン間に還流ダイオードが接続された構造を有する炭化珪素半導体装置を一の炭化珪素基板を用いて提供する。
【解決手段】第1層34は第1導電型を有する。第2層35は、第1層34の一部が露出されるように第1層34上に設けられ、第2導電型を有する。第1〜第3不純物領域は、第2層35を貫通して第1層34に達する。第1および第2不純物領域11、12の各々は第1導電型を有する。第3不純物領域13は、第1および第2不純物領域11、12の間に配置され、かつ第2導電型を有する。第1〜第3電極S1、D1、G1は、第1〜第3不純物領域11〜13のそれぞれの上に設けられている。ショットキー電極SKは、第1層34の一部の上に設けられ、第1電極S1に電気的に接続されている。 (もっと読む)


【課題】リーク電流が増加することなく、オン抵抗を低くすることができる半導体装置を提供する。
【解決手段】基板の上に形成されたバッファ層21と、バッファ層21の上に形成された遷移金属がドープされている高抵抗層22と、高抵抗層22の一部または高抵抗層上に形成された低抵抗となる不純物元素がドープされた低抵抗領域122と、低抵抗領域122を含む領域上に形成された電子走行層23と、電子走行層23の上に形成された電子供給層25と、電子供給層25の上に形成されたゲート電極31、ソース電極32及びドレイン電極33を有する。 (もっと読む)


【課題】チャネルへの電子供給能力が改善されたIII−V族FETを提供する。
【解決手段】基板2の上には、ナローバンドギャップ材料のチャネル層4が形成される。チャネル層4の上のソース領域には、ワイドバンドギャップ材料のコンタクト層6が形成される。ソースコンタクト層6は、1×1019cm−3以上の濃度でドーピングされる。FET1は、ソースコンタクト層6によってアンドープのチャネル層4に直接キャリアが注入されるように構成される。 (もっと読む)


【課題】窒化物半導体を用いた電界効果トランジスタで、高いドレイン電流が実現できるようにする。
【解決手段】ドレイン電極107とゲート領域121との間のドレイン領域123の距離は、ソース電極106とゲート領域121との間のソース領域122の距離より長く形成され、加えて、ゲート電極104は、ゲート領域121からソース電極106の側に延在する延在部141を備えて形成されている。ゲート電極104のソース電極106の側への延在部141により、ゲート電極104に対する電圧印加でソース領域122のチャネル層101における電子濃度が増加可能とされている。 (もっと読む)


【課題】単一基板上にソース・ドレインを同一工程で同時形成したIII−V族半導体のnMISFETおよびIV族半導体のpMISFETのソース・ドレイン領域抵抗または接触抵抗を小さくする。
【解決手段】第1半導体結晶層104に形成された第1チャネル型の第1MISFET120の第1ソース124および第1ドレイン126が、第1半導体結晶層104を構成する原子と、ニッケル原子との化合物、または、コバルト原子との化合物、またはニッケル原子とコバルト原子との化合物からなり、第2半導体結晶層106に形成された第2チャネル型の第2MISFET130の第2ソース134および第2ドレイン136が、第2半導体結晶層106を構成する原子と、ニッケル原子との化合物、または、コバルト原子との化合物、または、ニッケル原子とコバルト原子との化合物からなる。 (もっと読む)


【課題】半導体装置においてオーミック特性を良好にし、かつ、酸・アルカリによる腐食に対し高い耐性を有することが可能な技術を提供することを目的とする。
【解決手段】半導体装置は、不純物が添加された高濃度不純物領域2を有する窒化物半導体層1と、高濃度不純物領域2上に順に積層された下地電極層3及び主電極層4を含む電極11とを備える。主電極層4は、窒化物半導体層1に対して下地電極層3よりも仕事関数が近い第1金属と、水素よりもイオン化傾向が小さい第2金属とからなる合金を主成分として含む。下地電極層3は、主電極層4よりも窒素との反応性が高い金属を主成分として含み、かつ、第1金属を含む。 (もっと読む)


【課題】ワイドバンドギャップ半導体層とメタル電極のコンタクト抵抗を低減することができる半導体装置の製造方法を得る。
【解決手段】まず、シリコンに比べてバンドギャップが大きいIII−V族化合物半導体又はIV−IV族化合物半導体からなるp型窒化ガリウム層1の表面に、3−ヘリウム又は4−ヘリウムのイオンを照射してイオン照射領域2を形成する。イオン照射領域2を形成した後に、p型窒化ガリウム層1の表面にオーミックコンタクトしたメタル電極3を形成する。 (もっと読む)


【課題】高抵抗なダメージ層を形成しない窒化物半導体層のエッチング方法と、これを用いた低抵抗なオーミック電極を備える窒化物半導体装置の製造方法の提供を目的とする。
【解決手段】本発明の窒化物半導体層のエッチング方法は、(a)窒化物半導体層に不純物イオンを注入し、その表面から所定深さまで不純物領域を形成する工程と、(b)前記不純物領域を熱処理する工程と、(c)前記不純物領域の前記表面側の所定領域をウェットエッチングで除去する工程とを備える。 (もっと読む)


【課題】窒化物半導体装置の、ソース・ドレイン間のオン抵抗を低減する。
【解決手段】ソース・ドレイン間を走行する窒化物半導体層と下地となる窒化物半導体層の間に、両窒化物半導体層より電子親和力が大きく、下地となる窒化物半導体よりも格子定数の大きい材料を形成する。その結果、ゲート電圧の印加によりゲート絶縁膜の下方に形成されるチャネルと、ゲート部以外で形成される二次元電子ガスを、深さ方向において近づけることができ、オン抵抗の低減が可能となる。 (もっと読む)


【課題】窒化物半導体層とオーミック電極とのコンタクト抵抗を低減できる窒化物半導体装置を提供する。
【解決手段】Si基板10上に形成されたアンドープGaN層1,アンドープAlGaN層2と、アンドープGaN層1,アンドープAlGaN層2上に形成されたTi/Al/TiNからなるオーミック電極(ソース電極11,ドレイン電極12)とを備える。上記オーミック電極中の酸素濃度を1×1016cm−3以上かつ1×1020cm−3以下とする。 (もっと読む)


【課題】絶縁破壊耐性に優れた化合物半導体積層構造を備えて基板の絶縁破壊の十分な抑止を実現し、ピンチオフ状態とする際にもリーク電流が極めて少ない信頼性の高い化合物半導体装置を実現する。
【解決手段】Si基板1上に形成された化合物半導体積層構造2は、その厚みが10μm以下であって、AlNからなる厚い第1のバッファ層を有しており、III族元素(Ga,Al)の総原子数のうち、Al原子の比率が50%以上とされ、換言すれば、V族元素のNとの化学結合(Ga−N,Al−N)の総数のうち、Al−Nが50%以上とされる。 (もっと読む)


【課題】膜剥がれの要因となる有機材料を用いることなく、エレクトロマイグレーションの耐性と長期信頼性を向上できるパワーデバイスを提供する。
【解決手段】バリア層4(AlGaN)4上に形成された酸化シリコン(SiO2)からなる層間絶縁膜10と、層間絶縁膜10のソース電極5上に形成され、基板平面に対して略垂直な第1の側壁W1を有する第1コンタクトホール部10aと、第1コンタクトホール部10aの第1の側壁W1の上縁から上側に向かって徐々に広がるように層間絶縁膜10に形成され、基板平面に対して傾斜した第2の側壁W2を有する第2コンタクトホール部10bと、第1,第2コンタクトホール部10a,10b内および層間絶縁膜10上に形成された配線層12とを備える。上記配線層12は、第1コンタクトホール部10aにおいて第1の側壁W1の基板厚さ方向の寸法よりも膜厚が厚い。 (もっと読む)


【課題】ウルツ鉱型結晶構造の半導体を用いた電界効果トランジスタで、電極との接触抵抗を高くすることなく、バンドギャップエネルギーのより大きな半導体から障壁層が構成できるようにする。
【解決手段】ゲート電極104を挟んで各々離間して障壁層103の上に接して形成された2つの電流トンネル層105と、各々の電流トンネル層105の上に形成された2つのキャップ層106とを備える。電流トンネル層105の分極電荷は、障壁層103の分極電荷よりも大きい。 (もっと読む)


【課題】高周波数動作が可能な半導体装置を提供すること。
【解決手段】本発明は、基板10上に設けられたGaN電子走行層14と、GaN電子走行層14上に設けられたAlNスペーサ層16と、AlNスペーサ層16上に設けられたInAlN電子供給層18と、InAlN電子供給層18上に設けられたゲート電極24とゲート電極24を挟むソース電極26およびドレイン電極28と、を備え、AlNスペーサ層16の膜厚が、0.5nm以上1.25nm以下の半導体装置である。 (もっと読む)


【課題】装置全体としての長寿命化を図りつつ、装置全体としての小型化を可能とする電動機駆動装置を提供する。
【解決手段】駆動部12は、横型半導体素子からなる1回路2接点式の切替素子16,17を2つ有している。第1の切替素子16は、コモン端子160を電動機11に接続し、第1の端子161および第2の端子162を電源部15に接続する。第2の切替素子17は、コモン端子170を電動機11に接続し、第1の端子171および第2の端子172を電源部15に接続する。制御部14は、各切替素子16,17において、コモン端子160,170が、第1の端子161,171および第2の端子162,172に対して択一的に接続されるように、各切替素子16,17を個別に切替制御する。 (もっと読む)


【課題】高耐圧及び高電流の動作が可能な半導体素子及びその製造方法を提案する。
【解決手段】内部に2次元電子ガス(2DEG)チャンネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50の方向に突出した多数のパターン化された突起61を備え、内部に窒化物半導体層30にオーミック接合されるオーミックパターン65を含むソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上に、且つ、パターン化された突起61を含んでソース電極60上の少なくとも一部に亘って形成された誘電層40と、一部が、誘電層40を間に置いてソース電極60のパターン化された突起61部分及びドレイン方向のエッジ部分の上部に形成されたゲート電極70と、を含んでなる。 (もっと読む)


21 - 40 / 386