説明

Fターム[5F102GM04]の内容

Fターム[5F102GM04]の下位に属するFターム

Fターム[5F102GM04]に分類される特許

121 - 140 / 1,734


【課題】高電圧が印加されても、故障しにくい複合半導体装置を提供する。
【解決手段】複合半導体装置200はダイオード210の上に形成された遷移体220を含み、この遷移体220は2以上の半導体層を含む。複合半導体装置200は遷移体220の上に形成されたトランジスタ230も含む。ダイオード210は半導体貫通ビア、外部電気接続部又はその両方の組み合わせを用いてトランジスタ230の両端間に接続される。 (もっと読む)


【課題】ソース電極とドレイン電極間の容量を低減し、スイッチングロスを減らすことができるスイッチング素子、及び該スイッチング素子を搭載した効率が向上した電源装置の提供。
【解決手段】Si基板1と、該Si基板1上に形成されたソース電極8及びドレイン電極9を有してなり、ソース電極8及びドレイン電極9の配置方向と直交する方向の層中であって、ソース電極8及びドレイン電極9のいずれか一方のみと接している領域に、p型領域とn型領域が接している部分24であるpn接合を少なくとも1つ有するスイッチング素子である。 (もっと読む)


【課題】改良されたプレーナデバイスを提供する。
【解決手段】電子デバイスは、移動電荷キャリアを支持する基板と、該基板面上に形成されてその両側に第1および第2の基板領域を定義し、該第1および第2の基板領域は該絶縁体によって定義される細長いチャネルによって接続され、該チャネルは該第1の領域から該第2の領域への基板内の電荷キャリア流路を提供し、該第1および該第2の基板領域間の伝導度は、この2つの領域間の電位差に依存する。該基板は有機材料とすることができる。移動電荷キャリアは、0.01cm/Vs〜100cm/Vsの範囲の移動度を有することができ、該電子デバイスはRFデバイスであってもよい。 (もっと読む)


【課題】逆方向漏れ電流が抑制されてなるとともに二次元電子ガスの移動度が高い半導体素子を提供する。
【解決手段】下地基板1の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板10と、ショットキー性電極9と、を備える半導体素子20において、エピタキシャル基板10が、Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物からなるチャネル層3と、Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物からなる障壁層5と、GaNからなり障壁層5に隣接する中間層6aと、AlNからなり中間層に隣接するキャップ6b層と、を備え、ショットキー性電極9がキャップ層6bに接合されてなるようにする。 (もっと読む)


【課題】高電子移動度トランジスタ及びその製造方法を提供する。
【解決手段】基板と、基板上に形成されたHEMT積層物と、を備え、HEMT積層物は、2DEGを含む化合物半導体層と、化合物半導体層より分極率の大きい上部化合物半導体層と、上部化合物半導体層上に備えられたソース電極、ドレイン電極及びゲートと、を備え、基板は、シリコン基板より誘電率及び熱伝導度の高い窒化物基板であるHEMT。該基板は、シリコン基板より誘電率及び熱伝導度の高い絶縁層、この絶縁層に蒸着された金属層及びこの金属層に付着されたプレートを備える。 (もっと読む)


【課題】リーク電流が増加することなく、オン抵抗を低くすることができる半導体装置を提供する。
【解決手段】基板の上に形成されたバッファ層21と、バッファ層21の上に形成された遷移金属がドープされている高抵抗層22と、高抵抗層22の一部または高抵抗層上に形成された低抵抗となる不純物元素がドープされた低抵抗領域122と、低抵抗領域122を含む領域上に形成された電子走行層23と、電子走行層23の上に形成された電子供給層25と、電子供給層25の上に形成されたゲート電極31、ソース電極32及びドレイン電極33を有する。 (もっと読む)


【課題】オン抵抗の増加を抑制でき、さらにオフ時のゲートリーク電流およびドレインリーク電流を低減できるノーマリオフ型の窒化物半導体装置およびその製造方法を提供する。
【解決手段】上層の窒化物半導体層15を下層の窒化物半導体層14の格子定数より大きい材料とし、ゲート電極とソース電極およびドレイン電極との間の上層の窒化物半導体層表面15を、窒素ガスのプラズマ処理を施す。プラズマ処理を行うことにより、プラズマ処理なしの窒化物半導体層の積層構造により形成される2次元電子ガス層のキャリア濃度より、高いキャリア濃度の2次元電子ガス層16が形成され、特性の優れたノーマリオフ型の窒化物半導体装置となる。 (もっと読む)


【課題】シリコン基板直上の窒化アルミニウム層の平坦性が低いことに起因する信頼性の低下が抑制された半導体装置を提供する。
【解決手段】シリコン基板10と、シリコン基板上に配置された、不純物としてシリコンがドープされた領域を有する窒化アルミニウム層20と、窒化アルミニウム層上に配置された、複数の窒化物半導体膜が積層された構造のバッファ層30と、バッファ層上に配置された、窒化物半導体からなる半導体機能層40とを備える。 (もっと読む)


【課題】テラヘルツ波を発生又は検出するテラヘルツ波素子において、単色性が良いテラヘルツ波を効率良く出射する。
【解決手段】テラヘルツ波素子は、基板101の上に形成された第1の半導体層102と、第1の半導体層102の上に形成された第2の半導体層104と、第2の半導体層104の上に形成されたゲート電極106と、第2の半導体層104の上にゲート電極106を挟んで対向するように形成されたソース電極107及びドレイン電極108と、第2の半導体層104の上におけるゲート電極106とソース電極107との間及びゲート電極106とドレイン電極108との間に形成され、複数の金属膜109が周期的に配置された周期構造を有する周期金属膜109A,109Bと、ゲート電極106及び複数の金属膜109の上方に配置された第1のミラー111と、基板101の下に形成された第2のミラー112とを備えている。 (もっと読む)


【課題】 高電子移動度トランジスタを用いて駆動回路を形成し、信頼性を低下させることなく、スイッチングトランジスタを高速に駆動する。
【解決手段】 駆動回路は、ドレインが第2ハイレベル電圧線に接続され、ソースが第1スイッチングトランジスタのゲートに接続される第1高電子移動度トランジスタと、ドレインが第1スイッチングトランジスタのゲートに接続される第2高電子移動度トランジスタと、ドレインが第2高電子移動度トランジスタのソースに接続され、ソースが接続ノードに接続される第1フィールドプレートと、第1および第2高電子移動度トランジスタを排他的にオンするために、第1および第2高電子移動度トランジスタのゲート電圧を生成し、第2高電子移動度トランジスタをオフするときに、第2高電子移動度トランジスタのゲートをロウレベル電圧線のロウレベル電圧に設定する制御部とを有している。 (もっと読む)


【課題】半導体パッケージ内における半導体素子の位置ずれを抑制することができる半導体装置を提供すること。
【解決手段】実施形態に係る半導体装置10は、凸部23が形成されたパッケージ基板11、導電性の接着剤25、およびパッケージ基板11上に実装された半導体素子14、を具備する。パッケージ基板11は、少なくとも2箇所に凸部23が形成された基板である。導電性の接着剤25は、凸部23を含むパッケージ基板11上に形成される。パッケージ基板11上に実装される半導体素子14は、各凸部23に係合する複数のバイアホール24を有している。さらに、半導体素子14は、少なくとも2箇所のバイアホール24が、各凸部23に接着剤25を介して係合するようにパッケージ基板11上に実装される。 (もっと読む)


【課題】高周波回路に於いては、トランジスタ等の能動素子間および能動素子と外部端子の間を直流的に遮断する必要がありため、MIMキャパシタ等が多用される。これらのMIMキャパシタのうち、外部端子に接続されたものは、外部からの静電気の影響を受けやすく、静電破壊等の問題を発生しやすい。
【解決手段】本願発明は、半絶縁性化合物半導体基板上に形成された半導体集積回路装置であって、外部パッドに電気的に接続されたMIMキャパシタの第1の電極は前記半絶縁性化合物半導体基板に電気的に接続されており、一方、前記MIMキャパシタの第2の電極は前記半絶縁性化合物半導体基板に電気的に接続されている。 (もっと読む)


【課題】高周波数動作が可能な半導体装置の製造方法を提供すること。
【解決手段】本発明は、成長炉内に配置した基板10上に、GaN電子走行層16を成長する工程と、成長炉に導入する混合ガス中の窒素原料ガスの分圧比を0.15以上0.35以下として、GaN電子走行層16上に、InAlN電子供給層18を成長する工程と、InAlN電子供給層18上に、ゲート電極26と、ゲート電極26を挟むソース電極28およびドレイン電極30と、を形成する工程と、を有する半導体装置の製造方法である。 (もっと読む)


【課題】電流コラプスを十分に抑制することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板1と、基板1上方に形成された化合物半導体積層構造2と、化合物半導体積層構造2上方に形成されたゲート電極3、及び平面視でゲート電極3を間に挟む2個のオーミック電極4a及び4bと、が設けられている。更に、ゲート電極3上方に形成され、ゲート電極3並びにオーミック電極4a及び4bから絶縁分離されたフィールドプレート6が設けられている。フィールドプレート6のオーミック電極4a及び4bを互いに結ぶ方向における少なくとも一方の端部は、平面視で、オーミック電極4a及び4bとゲート電極3との間に位置する。 (もっと読む)


【課題】窒化物半導体を用いた電界効果トランジスタで、高いドレイン電流が実現できるようにする。
【解決手段】ドレイン電極107とゲート領域121との間のドレイン領域123の距離は、ソース電極106とゲート領域121との間のソース領域122の距離より長く形成され、加えて、ゲート電極104は、ゲート領域121からソース電極106の側に延在する延在部141を備えて形成されている。ゲート電極104のソース電極106の側への延在部141により、ゲート電極104に対する電圧印加でソース領域122のチャネル層101における電子濃度が増加可能とされている。 (もっと読む)


【課題】窒化物半導体層上の層間絶縁膜の開口部が、電界の集中が緩和される形状に安定して精度良く形成された窒化物半導体装置及びその製造方法を提供する。
【解決手段】窒化物半導体層30と、窒化物半導体層30上に配置された第1の絶縁膜41と、第1の絶縁膜41上に配置された第2の絶縁膜42と、窒化物半導体層30上に互いに離間して配置された第1及び第2の主電極51,52と、第1及び第2の主電極51,52間で第2の絶縁膜42上に配置され、第1及び第2の絶縁膜に設けられた開口部を介して窒化物半導体層に接続するフィールドプレート60とを備える窒化物半導体装置であって、開口部において、窒化物半導体層30の表面と第1の絶縁膜41の側面とのなす第1の傾斜角が、窒化物半導体層30の表面と第2の絶縁膜42の側面を延長した線とのなす第2の傾斜角よりも小さく形成されている。 (もっと読む)


【課題】ヘテロ接合電界効果型トランジスタに用いられ得る窒化物系半導体層を含むエピタキシャルウエハの反りと結晶性を改善する。
【解決手段】ヘテロ接合電界効果型トランジスタに用いられ得る窒化物系半導体層を含むエピタキシャルウエハは、Si基板上においてAlNまたはAlONの第1バッファ層、Al組成比を段階的に減少させたAlGaNの第2バッファ層、第2バッファ層の上に配置されていてAlGa1−aN層/AlGa1−bN層の繰返し多層からなる第3バッファ層、GaNチャネル層、および電子供給層をこの順に含み、第2バッファ層の最上部のAl組成比xが0≦x≦0.3の範囲内にある。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、各ソース電極12の長手方向の長さL2が各ドレイン電極11の長手方向の長さL1よりも短く、ソース電極12の長手方向の両端12A,12Bがドレイン電極11の長手方向の両端11A,11Bよりも長手方向外方へ突出していない構成により、ソース電極12の端12A,12Bからドレイン電極11の端11A,11Bへ向かって電子流が集中することを回避できる。 (もっと読む)


【課題】高いスイッチング速度を有し、電圧降伏耐性を強化したネスト化複合ダイオードを提供する。
【解決手段】ネスト化複合ダイオードの種々の実現を、本明細書に開示する。1つの実現では、ネスト化複合ダイオードが、複合ダイオードに結合されたプライマリ・トランジスタを含む。複合ダイオードは、中間型トランジスタとカスコード接続された低電圧(LV)ダイオードを含み、中間型トランジスタは、LVダイオードよりは大きく、プライマリ・トランジスタよりは小さい降伏電圧を有する。1つの実現では、プライマリ・トランジスタはIII-V族トランジスタとすることができ、LVダイオードはIV族LVダイオードとすることができる。 (もっと読む)


【課題】ヘテロ接合を有する半導体装置において、リーク電流と電流コラプスのトレードオフ関係を打破し、リーク電流と電流コラプスの双方を抑制すること。
【解決手段】半導体装置1の電子走行層4は、炭素が導入されている高抵抗領域4aを含んでいる。電子走行層4と電子供給層5のヘテロ接合5aと平行な断面において、高抵抗領域4aの炭素の濃度分布が、ドレイン電極12とソース電極18の少なくともいずれか一方の下方で相対的に濃く、ドレイン電極12と絶縁ゲート部16の間で相対的に薄くなるような断面が存在している。 (もっと読む)


121 - 140 / 1,734