説明

Fターム[5F140BE03]の内容

Fターム[5F140BE03]に分類される特許

341 - 356 / 356


【課題】 ゲート電極材料膜形成時に形成されたゲート電極材料膜/高誘電率ゲート絶縁膜の界面における寄生低誘電率界面層を還元し、ゲート絶縁膜の薄膜化を実現する。
【解決手段】 シリコン基板1上に下部界面層4としてのシリコン酸窒化膜4を形成し、その上に高誘電率ゲート電極5としてのHfアルミネート膜を形成する。Hfアルミネート膜5上にゲート電極材料膜7としてのポリシリコン膜をLPCVD法により570℃以上の温度で形成する。その後、ゲートドーパント9を注入する前に、950℃以上1050℃未満の温度で熱処理(PGA処理)8を行う。 (もっと読む)


【課題】絶縁ゲート型電界効果トランジスタの製造方法において、ゲート−ドレイン間の絶縁不良を増やすことなく、より短時間に効率的にトレンチ埋め込み絶縁膜を形成することのできる絶縁ゲート型電界効果トランジスタの製造方法を提供すること。
【解決手段】第一TEOS酸化膜を前記トレンチ間に凹部が残る厚さに堆積してアニール処理をすることにより前記トレンチ間に第一絶縁膜を形成する工程と、該第一絶縁膜上に第二TEOS酸化膜からなる第二絶縁膜を形成する工程とから前記トレンチ内に埋め込まれる絶縁膜を形成する絶縁ゲート型電界効果トランジスタの製造方法とする。 (もっと読む)


【課題】 本発明は、従来の構造を有するM0S型トランジスタでは不可能であった30から50Vの耐圧をもつ高耐圧構造を有するMOS型トランジスタの小型化、集積化を図ることことを目的とする。
【解決手段】 トレンチエッチング技術を使用し溝を形成し絶縁膜を埋め込み、イオン注入法を行い溝の側面に低濃度領域を形成することによりゲート電極の一端部と高濃度拡散領域の一端部の距離を自由に変える事により耐圧が容易に変えることができ、また小面積で提供できることを特徴とする。 (もっと読む)


【課題】 ダマシンゲートトランジスタのゲート絶縁破壊を抑制し、デバイスの信頼性を確保することのできる半導体装置の製造方法を提供する。
【解決手段】 シリコン基板1の上に、犠牲ゲート絶縁膜104および犠牲ゲート電極105を形成した後、犠牲ゲート電極105の側面に第1の側壁膜106を形成する。次に、第1の側壁膜106を介して、犠牲ゲート電極105の側面に、第1の側壁膜106とエッチングレートの異なる第2の側壁膜110を形成する。ここで、第1の側壁膜106の膜厚は、犠牲ゲート絶縁膜104の膜厚より厚くなるようにする。これにより、第1の側壁膜106および犠牲ゲート絶縁膜104をウェットエッチングする際のプロセスマージンを大きくして、第2の側壁膜110のゲート電極側下部にスリットが入るのを防ぐことができる。 (もっと読む)


【課題】 メタルゲート及びhigh-kゲート絶縁膜を有するCMOSにおいて、nMOS及びpMOSトランジスタの低しきい値化を実現する。
【解決手段】 n型MISFET形成領域11のゲート絶縁膜3aはHfO2膜であり、メタルゲート電極4aは、TiN膜と、ゲート絶縁膜との界面に生成されたにゲート電極に含まれるIV族遷移金属と酸素を含むがシリコンは含まない界面層とからなり、その仕事関数はn型MISFETのゲート電極材料に適した4.0〜4.2eVである。p型MISFET形成領域12のゲート絶縁膜3bはHfSiO/HfO2であり、メタルゲート電極4bはTiNと、ゲート絶縁膜との界面に形成されたにゲート電極に含まれるIV族遷移金属と酸素および金属的シリコン(Si0)からなる界面層とからなり、その仕事関数は、p型MISFETのゲート電極材料に適した4.9eVとなっている。 (もっと読む)


【課題】 微細化が進められてもトランジスタのオン電流を十分に確保することができる半導体装置及びその製造方法を提供する。
【解決手段】 全面に高電圧トランジスタ用のゲート絶縁膜4を形成した後、低電圧領域内に存在するゲート絶縁膜4を除去する際に、活性領域3が露出した時点でエッチングを終了するのではなく、低電圧領域内において、活性領域3の表面よりも素子分離絶縁膜2の表面が、例えば15nm程度低くなるまでオーバーエッチングを行う。次に、低電圧領域内の活性領域3に対して高温急速水素加熱処理を行う。この結果、低電圧領域内の活性領域3の表面から自然酸化膜が除去され、平坦度が増すと共に、角部が丸まる。 (もっと読む)


【課題】相対的に高いON電流と、相対的に低いしきい値電圧とを有するMISFETを形成する。
【解決手段】ゲート溝19の内壁に沿って高誘電率膜20を形成し、高誘電率膜20上に相対的に低い温度により酸化する金属膜を積層し、金属膜に不純物をイオン注入した後、相対的に低い温度で金属膜を酸化させて酸化金属膜を形成すると同時に、不純物を高誘電率膜20と酸化金属膜との界面に偏析させる。次いで、酸化金属膜を実質的に全て除去した後、改めて相対的に抵抗の低い金属膜をゲート溝19の内部に埋め込むことにより、金属ゲート24を形成する。 (もっと読む)


【課題】p型トランジスタの動作速度を高め、n型トランジスタとの動作速度の均衡がとれた半導体装置の製造方法を提供する。
【解決手段】p−MOS領域30aのソース/ドレイン領域にSiGe膜からなる圧縮応力印加部20を形成し、その後にp−MOS領域30aおよびn−MOS領域30bに不純物注入を行い、浅い接合領域22a、22bおよび深い接合領域23a、23bを形成する。SiGe膜を形成する際の加熱により浅い接合領域22a、22bの不純物がゲート絶縁膜15の直下に拡散することを防止し、短チャネル効果を防止すると共に、p−MOSトランジスタ13aのチャネル領域の正孔移動度を高め、n−MOSトランジスタ13bの動作速度との均衡により、相補型の半導体装置10の総合的な動作速度を高める。 (もっと読む)


【課題】 閾値の変動を回避するとともに、電気的ストレスに対する信頼性の高いMOSトランジスタを備えた半導体装置を提供する。
【解決手段】 素子領域を画定する素子分離領域(12)が設けられた半導体基板(11)と、前記半導体基板の前記素子領域に離間して設けられたソース/ドレイン領域(25)と、前記半導体基板の前記素子領域上に設けられたゲート絶縁膜(13,14)と、前記ゲート絶縁膜上に設けられ、半導体を含むゲート電極(15)とを具備する半導体装置である。前記ゲート絶縁膜は、金属および酸素を含有する第1の絶縁膜(13)と、この第1の絶縁膜上に形成され、シリコンおよび酸素を含有する第2の絶縁膜(14)とを含み、前記第2の絶縁膜は、前記ゲート電極との界面における前記金属の含有量が6.6atomic.%未満であることを特徴とする。 (もっと読む)


本発明はゲート型電界効果デバイスに関し、その製法にも関する。一例では、ゲート型電界効果デバイスはソース/ドレーン領域ペアを含み、チャンネル領域をそれらの間に有している。ゲートはソース/ドレーン領域間でチャンネル領域に近接して受領される。ゲートはソース/ドレーン領域間にゲート幅部を有している。ゲート誘電体はチャンネル領域とゲートに近接して受領される。ゲート誘電体は少なくとも2つの異なる領域をゲートの幅部に沿って有している。これら異なる領域はそれぞれ異なる誘電率kを有する2つの異質領域を提供するように異なる材料で提供される。 (もっと読む)


本発明は高耐圧用半導体素子およびその製造方法に関するものであり、本発明ではゲート電極パターンを半導体基板の底部に埋め込まれて形成すると共に、このゲート電極パターンの両方の側部にソース/ドレイン拡散層のための低濃度不純物層及び高濃度不純物層を順次に積層形成し、これにより、高濃度不純物層がゲート電極パターンと別途の離隔距離を確保しなくても、自身に必要な一連の電圧降下領域を容易に確保できるように誘導することで、高濃度不純物層及びゲート電極パターンの離隔による素子のサイズ増加を事前に防止することができる。
このような本発明の実施によって、高濃度不純物層及びゲート電極パターンの離隔必要性が効果的に除去される場合、最終完成する素子のサイズは大幅に減り、結局、素子のサイズ増加による製造コストの上昇問題点も自然に解決される。
(もっと読む)


誘電体層(14,22,24,32)は、ランタン、ルテチウム、及び酸素により構成され、かつ2つの導体の間、または導体(14,20,34)と基板(12,26,30)との間に形成される。一の実施形態では、誘電体層は基板を覆って形成され、境界層を追加する必要がない。別の実施形態では、誘電体層(22,42,46)に含まれる元素の分布は、ランタン含有量またはルテチウム含有量に関して傾斜する、または誘電体層(22,42,46)は別の構成として、アルミニウムを含むことができる。更に別の実施形態では、絶縁層を導体または基板と誘電体層との間、または導体及び基板の両方と誘電体層との間に形成する。誘電体層は、分子ビームエピタキシー法によって形成することが好ましいが、原子層化学気相成長、物理気相成長、有機金属化学気相成長、またはパルスレーザ堆積によって形成することもできる。
(もっと読む)


シリコン基板(101)上に、RTO法によりシリコン酸化物からなる下地層(103)を形成する。このとき、下地層(103)の膜厚を1.5nm以上とする。次に、下地層(103)上に、CVD法によりハフニウム窒化物を0.5乃至1.0nmの厚さに堆積させ、金属化合物層(104)とする。次に、水素雰囲気中において熱処理を施し、金属化合物層(104)から下地層(103)中にハフニウム元素を拡散させてシリケート化させ、ゲート絶縁膜(106)を形成する。その後、酸化雰囲気中において熱処理を行う。このとき、シリコン基板(101)とゲート絶縁膜(106)との界面には、ハフニウム元素が到達しないようにする。
(もっと読む)


【課題】 高性能デバイスの金属置換ゲートのための構造および形成方法を提供する。
【解決手段】 まず、半導体基板(240)上に設けたエッチ・ストップ層(250)上に、犠牲ゲート構造(260)を形成する。犠牲ゲート構造(300)の側壁上に、1対のスペーサ(400)を設ける。次いで、犠牲ゲート構造(300)を除去して、開口(600)を形成する。続けて、スペーサ(400)間の開口(600)内に、タングステン等の金属の第1の層(700)、窒化チタン等の拡散バリア層(800)、およびタングステン等の金属の第2の層(900)を含む金属ゲート(1000)を形成する。 (もっと読む)


SiC基板1と、SiC基板1表面に形成されたソース3a及びドレイン3bと、SiC表面に接して形成され厚さが1分子層以上のAlN層5と、その上に形成されたSiO層とを有する絶縁構造と、この絶縁構造上に形成されたゲート電極15とを有しており、SiCとの間の界面状態を良好に保ちつつ、リーク電流を抑制することができる。 (もっと読む)


【課題】 結晶の乱れ及び結晶表面の荒れを低減させたイオン注入層を提供する。
【解決手段】 本発明に係るSiC半導体1のイオン注入層2は、4H型SiCの{03−38}面から10°以内の角度αのオフ角を有する面方位の面に広がっている。 (もっと読む)


341 - 356 / 356