説明

Fターム[5H018AA06]の内容

無消耗性電極 (49,684) | 用途 (5,900) | 燃料電池 (5,766) | 水素−酸素燃料電池 (4,866) | 固体電解質を用いるもの (4,369)

Fターム[5H018AA06]に分類される特許

181 - 200 / 4,369


【課題】優れた触媒活性を有する触媒微粒子の製造方法、及びカーボン担持触媒微粒子の製造方法を提供する。
【解決手段】内部粒子と、白金を含み当該内部粒子を被覆する最外層とを備える触媒微粒子の製造方法であって、酸素欠陥を有しない第1の金属酸化物からなる微粒子を含む逆ミセルの分散液を準備する工程、白金イオンを含む逆ミセルの分散液を準備する工程、並びに、少なくとも、前記第1の金属酸化物からなる微粒子を含む逆ミセルの分散液、前記白金イオンを含む逆ミセルの分散液、及び犠牲剤を混合し、当該混合物にマイクロ波を照射することにより、前記第1の金属酸化物からなる微粒子の少なくとも表面を、酸素欠陥を有する第2の金属酸化物に還元し、且つ、当該第2の金属酸化物上に、前記白金イオンが還元されてなる白金を含む最外層を形成する還元工程を有することを特徴とする、触媒微粒子の製造方法。 (もっと読む)


【課題】燃料として少なくとも水素および窒素を含む化合物を含み、電解質層としてアニオン交換膜が用いられる、発電性能の優れた燃料電池を提供する。
【解決手段】アニオン交換膜からなる電解質層4と、電解質層4を挟んで対向配置される燃料側電極2および酸素側電極3とを備える燃料電池1において、燃料側電極2に、金属触媒としてマンガンとニッケルとを、マンガンの含有割合が、マンガンとニッケルとの総モルに対して、20〜70モル%となるように含ませる。また、燃料として、ヒドラジンなどの、少なくとも水素および窒素を含有する化合物を使用する。 (もっと読む)


【課題】燃料電池内で発生するフラッディングを抑制することができる燃料電池を提供する。
【解決手段】電解質膜10と電解質膜10の両側に配置されるアノード極12及びカソード極14とを備える膜電極接合体16と、膜電極接合体16の両側に配置される細孔層18,20と、細孔層18,20の外側に配置される反応ガス流路となる多孔体流路層22,24と、を備え、少なくともアノード極12側の細孔層18と多孔体流路層22との間にはガス拡散層21が配置されず、アノード極12側の細孔層18と多孔体流路層22とは接しており、アノード極12側の細孔層18は撥水性を有し、アノード極12側の多孔体流路層22は親水性を有する燃料電池1を用いる。 (もっと読む)


【課題】安全性が高く取り扱いが容易であって、触媒コストが低く、しかも優れた性能を有する新規な燃料電池を提供する。
【解決手段】正極、負極、および該正極と該負極との間に配置された電解質膜を含む固体高分子形燃料電池であって、
該電解質膜が陰イオン交換膜であり、
該負極触媒が表面の少なくとも一部が金により置換されたニッケルであり、
該負極に供給される燃料が、化学式:RNH3−n2m+1 (式中、Rは一価の炭化水素基であり、nは0〜3の整数であり、mは1又は3である。但し、2個又は3個のRが相互に結合して、窒素原子と共に含窒素環状構造を形成しても良い。)で表されるアミンボラン化合物の水溶液である
直接液体燃料型燃料電池。 (もっと読む)


【課題】カソード側からアノード側へ水を逆拡散させ、かつ電解質膜の損傷を防止する。
【解決手段】燃料電池10は、電解質膜12と、電解質膜12の一方面に形成され触媒を担持するアノード側触媒層14と、電解質膜12の他方面に形成され触媒を担持するカソード側触媒層15と、アノード側触媒層14に積層され多孔質のアノード側ガス拡散層16と、カソード側触媒層15に積層され多孔質のカソード側ガス拡散層17と、を備え、積層方向におけるアノード側触媒層14の厚みがT1であり、積層方向におけるカソード側触媒層15の厚みがT2であり、積層方向におけるアノード側ガス拡散層16の厚みがT3であり、積層方向におけるカソード側ガス拡散層17の厚みがT4である時に、T1+T3≧T2+T4)、T1<T2、T3>T4の関係を満たす。 (もっと読む)


【課題】空気雰囲気で保管された電池スタックを再起動する際に発生するカーボン腐食を抑制することができ、長期に亘り電池性能の低下を抑制する。
【解決手段】実施形態の固体高分子形燃料電池は、固体高分子電解質膜100と、電解質膜100の一方の面に接触して配置された触媒層210、及び該触媒層210の電解質膜100と反対側の面に配置されたガス拡散層220を有する燃料極200と、電解質膜100の他方の面に接触して配置された触媒層310、及び該触媒層310の電解質膜100と反対側の面に配置されたガス拡散層320を有する酸化剤極300と、を具備している。そして、酸化剤極300の触媒層310に、該触媒層310を平面方向に分断するように絶縁層が設けられている。 (もっと読む)


【課題】燃料電池の効率をよくするための触媒を提供する。
【解決手段】燃料電池であって、電解質膜100と、前記電解質膜100の両面に形成された触媒層と、を備え、前記触媒層200は、プラチナ触媒115を担持したカーボンである1次粒子110が複数集まって形成される2次粒子120と、前記2次粒子の内部に浸透するとともに、前記2次粒子の外部を覆うアイオノマー130、131と、を含んでおり、前記2次粒子120の半径が、105nm〜200nmの範囲内である、燃料電池。 (もっと読む)


【課題】触媒金属の酸化を抑制でき、従来の製造方法によってできた触媒金属に比して活性の高い触媒金属が担持された触媒担持担体を製造することのできる触媒担持担体の製造方法を提供する。
【解決手段】導電性担体を含有する溶液に触媒金属を含有する溶液を添加し、還元して乾燥した後に熱処理して触媒金属のメタル化を図って触媒担持担体の中間粉体を生成する第1のステップ、中間粉体に水と還元性を有するアルコールからなる還元性溶液を投入して懸濁状態とし、これをろ過し、大気乾燥して触媒担持担体を製造する第2のステップからなる製造方法である。 (もっと読む)


【課題】電極触媒層にシワや割れが発生することを低減し得、しかも、長期間にわたって良好な発電特性を示す電解質膜・電極接合体の製造方法を提供する。
【解決手段】電極触媒層となるインクは、水とアルコールの混合液からなる溶剤に対し、触媒、必要に応じて繊維状カーボンが各々所定の割合で添加されて調製される。一方、インキパン52に貯留された前記インクを電解質膜に塗工するためのグラビア印刷装置50は、版胴58と圧胴60を備える。これら版胴58及び圧胴60には、制御回路82によって発熱量が制御される第1ヒータ66、第2ヒータ68がそれぞれ埋設されており、版胴58及び圧胴60の温度は、第1ヒータ66、第2ヒータ68の作用下に、80〜130℃の間に調節される。 (もっと読む)


【課題】触媒層に亀裂部を形成して燃料電池の出力電圧を向上させる。
【解決手段】燃料電池の膜電極接合体は、高分子電解質膜10に、カソード触媒層12、アノード触媒層14、カソードガス拡散層16、アノードガス拡散層18を形成して構成される。カソード触媒層12あるいはアノード触媒層14の少なくともいずれかに、面積比で4%〜13%、幅5μm〜10μmの亀裂部を形成することで反応ガスの拡散を容易にしつつ、生成水の排水性を確保する。 (もっと読む)


【課題】凸凹状に形成されている固体高分子電解質膜を用いた際に、電極(触媒層)における固体高分子電解質膜の凹状部分近傍での生成水の排出性を高め、ガス拡散性を確保することができる、膜−電極接合体を提供することを目的とする。
【解決手段】固体高分子電解質膜10と、触媒層20C(20A)及びガス拡散層30C(30A)を有する電極40C(40A)と、を備え、固体高分子電解質膜10の凸凹状に形成されている主面と接触する触媒層20Cは、固体高分子電解質膜10の厚み方向から見て、凹状部分1Aと重なる部分が、第1触媒層2Aと第2触媒層2Bで形成されていて、第1触媒層2Aは、第2触媒層2Bよりもアイオノマー/カーボンの質量比(I/C)が低く、及び/又はイオン交換基当量重量(EW)が高くなるように構成されている、膜−電極接合体。 (もっと読む)


【課題】貴金属の粗大粒子化を抑止でき、かつこの貴金属が含有された薬液が莫大な量となることもない触媒担持担体の製造方法と製造装置を提供する。
【解決手段】触媒金属Pbを修飾する貴金属Qを含有する薬液S”を希釈槽の溶媒S’内に投入して希釈液S2を生成すること、および、触媒金属Pbが導電性担体Paに担持された触媒担持担体の中間体Pが含有された懸濁液S1を反応槽に収容すること、からなる第1のステップ、希釈液S2を反応槽内の懸濁液S1に投入し、触媒金属Pbの表面に貴金属Qを修飾させて触媒担持担体Rを生成するとともに、反応槽から溶媒を分離して希釈槽に戻してその再利用を図る第2のステップからなる触媒担持担体の製造方法である。 (もっと読む)


【目的】高分子系電解質膜に大量のリン酸を予め含浸させることなく、長期にわたってセルの出力電圧が維持される中温型プロトン交換膜形燃料電池を提供することにある。
【解決手段】固体高分子形燃料電池14によれば、酸化剤電極30の酸化剤触媒層26と酸化剤ガス拡散層28との間に、その酸化剤触媒層26から酸化剤ガス拡散層28への液体のリン酸の移動を抑制するための少なくとも一層から成るリン酸移動抑制多孔質層42が設けられていることから、液体のリン酸が酸化剤触媒層26から酸化剤ガス拡散層28へ移動することが抑制されるので、高分子系電解質膜18および酸化剤触媒層26内に含まれる液体のリン酸が枯渇することが抑制され、高分子系電解質膜18に大量のリン酸を予め含浸させる必要がなく、長期にわたってセルの出力電圧が維持される利点がある。 (もっと読む)


【課題】燃料電池用のカソード白金触媒における白金の使用量を低減するために、白金の触媒特性を十分に引き出し、触媒の質的な活性を表す表面積あたりの活性(比活性)を向上させること。
【解決手段】白金をカーボン担体に担持させてなる白金担持カーボン触媒であって、X線光電子分光装置(XPS)で測定される、カーボン担体のsp混成軌道とsp混成軌道の光電子強度の積分強度比sp/spが1.8〜3.3の範囲内にある白金担持カーボン触媒。 (もっと読む)


【課題】比表面積が大きい固体酸化物形燃料電池用の燃料極または空気極を、簡便かつ安価な方法により作製可能とする粒子集合体の製造方法を提供する。
【解決手段】一次粒子径が1nm以上かつ20nm以下、分散粒径が1nm以上かつ100nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を溶媒に分散させて粒子分散液を調製する工程Aと、該粒子分散液を噴霧することにより噴霧液体状態とし、この噴霧液体状態の粒子分散液を、−196℃以上かつ0℃以下の冷却物質に曝すことにより、前記粒子分散液を凍結させる工程Bと、該凍結した粒子分散液の溶媒を昇華させて、除去する工程Cとを有し、前記工程Aにおいて、前記粒子分散液における正方晶ジルコニア粒子または安定化ジルコニア粒子の含有率を1質量%以上かつ70質量%以下とし、工程Bにおいて、噴霧液体状態の液滴径を1μm以上かつ100μm以下とする。 (もっと読む)


【課題】電気化学特性に優れた複合膜構造体及び燃料電池、並びにそれらの製造方法を提供する。
【解決手段】水素透過性金属膜1と固体電解質膜2とからなる複合膜構造体であって、固体電解質膜2は、水素透過性金属膜1の熱酸化処理した表面上に塗布法により形成されたものであり、2価のアルカリ土類金属をAサイトに配し、4価のセリウム及び4価のジルコニウムのうち少なくとも一方をBサイトに配するペロブスカイト型酸化物を基本構造とし且つ4価のBサイト元素の一部を3価の希土類元素で置換した結晶構造を有する化合物からなり、固体電解質膜2は、アルカリ土類金属と、セリウム及びジルコニウムのうち少なくとも一方と、希土類元素と、を含む有機金属酸塩溶液を塗布して第1固体電解質前駆体膜を形成し、前記第1固体電解質前駆体膜を急速昇温熱処理により結晶化させることにより形成した第1固体電解質膜21を備える。 (もっと読む)


【課題】多孔質体がセパレータから剥離し難い構造の燃料電池を提供する。
【解決手段】燃料電池の反応ガスの流路となる多孔質体28と、多孔質体28の主面と接するセパレータ34と、多孔質体28の周縁及びセパレータ34と接し、多孔質体28より緻密度の高い緻密層30と、を備え、多孔質体28及び緻密層30はセパレータ34に接合されている燃料電池1を用いる。 (もっと読む)


【課題】本発明は、燃料電池セルで有用に用いられる気孔体の表面において、疎水特性を向上させることができる装置及び方法を提供することを目的とする。
【解決手段】本発明の疎水性が改善された気孔体は、マイクロメータスケールの粗さを有する気孔体の表面に、ナノメータスケールのナノ突起または陥没した形態の気孔が形成されてマイクロ−ナノ二重構造の表面をなしているとともに、前記マイクロ−ナノ二重構造の表面上に疎水性薄膜が形成され、前記気孔体は、巨大気孔支持体単独であるか、または巨大気孔支持体に微細気孔層が積層されてなり、前記疎水性薄膜、より好ましくは、ケイ素と酸素を含む炭化水素系薄膜、またはフッ素を含む炭化水素系薄膜であり、前記疎水性薄膜が形成された表面は、純水の静的接触角が150°以上であるることを特徴とする。 (もっと読む)


【課題】拡散層基材に対して効果的に撥水性を付与することのできる技術を提供する。
【解決手段】燃料電池の製造方法は、拡散層基材を準備する工程と、拡散層基材の一方の面に、加熱されることによって撥水化ガスを発生させるとともに多孔質層を形成するペーストを塗布する工程と、拡散層基材の一方の面を、撥水化ガスを遮蔽する遮蔽膜で覆う工程と、遮蔽膜で覆われた面を重力方向の上側に向けた状態で、ペーストが塗布された拡散層基材を加熱する工程とを備える。 (もっと読む)


【課題】燃料極に含まれるNi成分の電解質層側への拡散抑制効果をより高めた固体電解質形燃料電池を提供すること。
【解決手段】この固体電解質形燃料電池は、固体電解質層であるLSGMの粒界にMgOを点在させている。LDCを挟んでLSGMと反対側に形成されている燃料極から拡散されるNi成分は、この点在しているMgO粒子によって捕捉され、電解質層中を空気極側へ拡散することが抑制される。 (もっと読む)


181 - 200 / 4,369