説明

Fターム[5H018DD06]の内容

無消耗性電極 (49,684) | 電極の構成要素 (4,308) | 繊維、ファイバー (1,834) | 布(織布、不織布)、紙 (901)

Fターム[5H018DD06]に分類される特許

21 - 40 / 901


【課題】水の排出性とガス拡散性を両立させ、電圧特性を向上させることができるガス拡散層、燃料電池用電極、膜電極接合体、及び燃料電池を提供する。
【解決手段】ガス拡散層は、触媒層側に形成される第1の面、及び触媒層の反対側に形成される第2の面を有するガス拡散基材と、導電性粉末を含有すると共にガス拡散基材の第1の面上、及びガス拡散基材内に配置される微細孔層と、を有し、アノード及びカソードの少なくとも一方において、微細孔層は、ガス拡散層の厚さ方向に連続しており、厚さ方向と垂直な断面上の微細孔層の量は、厚さ方向における第1の断面位置において最大となると共に、第1の断面位置から第2の面へ向かうに従って減少し、厚さ方向におけるガス拡散基材の中央位置から触媒層側の領域に含まれる微細孔層の量は、微細孔層の全体の量の80%以上であり、微細孔層は、第2の面まで及んでいる。 (もっと読む)


【課題】燃料電池の製造に有用であるガス拡散層を提供する。
【解決手段】1ミクロン以下の厚さを有する親水性表面層、および、その下に、少なくとも5ミクロンの厚さを有するフルオロポリマーを含んでなる疎水性の第2の層を含んでなる燃料電池ガス拡散層。 (もっと読む)


【課題】
触媒電極層塗布やセル積層時の破断を防止し、ガス拡散電極に有用な耐衝撃性のある高伸度の炭素繊維紡績糸織物及びその製造方法を提供する。
【解決手段】
厚さの平均値が100〜1000μm、炭素繊維紡績糸織物の幅方向において測定される厚さの最大値と最小値との差が、厚さの平均値の20%以下、目付50〜300g/m、電気抵抗値150mΩ/cm以下、長手方向と幅方向のうち少なくとも一方向における伸度が15%以上である炭素繊維紡績糸織物。 (もっと読む)


【課題】 電気伝導性を持つ多孔質のガス拡散基材と中間層の定着を良好とすることができ、安定性に優れた中間層を持つガス拡散層を提供する。
【解決手段】 実施形態によれば、電気伝導性を持つ多孔質基材1の表面上に、電気伝導性を持つ炭素粉末と結着材との混合粉末からなる中間層2を形成したガス拡散層であって、多孔質基材1の表面粗さRaよりも混合粉末2の平均粒子径Lが小さい。 (もっと読む)


【課題】炭素短繊維の破断が少なく、導電性に優れた多孔質電極基材およびその製造方法を提供すること。
【解決手段】炭素短繊維(A)と、炭素繊維前駆体短繊維(b1)およびフィブリル状炭素前駆体繊維(b2)の少なくとも一方とを平面内において分散させた前駆体シートを製造する工程(1)と、前記前駆体シートの水分率を30%以上300%以下に調整する工程(2)と、ロール対を一対以上有する連続式加熱ロールプレス装置を用いて、前記前駆体シートを加熱加圧処理する工程(3)と、加熱加圧した前駆体シートを1000℃以上の温度で炭素化処理する工程(4)とを有する多孔質電極基材の製造方法。および該製造方法で得られる多孔質電極基材。 (もっと読む)


【課題】厚みの小さい、炭素繊維紡績糸織物とその製造方法、および該炭素繊維紡績糸織物の原料となる炭素繊維前駆体紡績糸織物を提供する。
【解決手段】少なくとも緯糸となる炭素繊維前駆体紡績糸は、炭素繊維前駆体繊維と、該炭素繊維前駆体繊維と混紡され又は合撚される消失性繊維とを原料とする。該炭素繊維前駆体紡績糸織物を原料とする炭素繊維紡績糸織物は、厚み50〜300μm、目隙度2〜20%であって、剛軟度及び電気抵抗値が特定の範囲にあり、炭素繊維紡績糸のメートル番手は、1/50〜200Nmの単糸と2/100〜2/400Nmの双糸とからなる群から選ばれる。この炭素繊維紡績糸織物は、燃料電池のガス拡散電極用に好ましい。 (もっと読む)


【課題】 圧縮前後における厚みの変動が小さく、径の小さな芯材に巻き取り可能な多孔質炭素電極基材を提供することを目的とする。
【解決手段】 炭素短繊維を炭素により結着した炭素繊維紙であって、
シートマシン流れ方向(MD)の曲げ強度(F)と流れに対して直角方向(TD)の曲げ強度(W)との比X(X=W/F)が0.20〜0.40の範囲にあり、
厚み方向に対して繰り返し3.5MPaの面圧を付与する圧縮試験において、初回圧縮時の付与面圧2.0MPaにおける多孔質炭素電極基材の厚みと10回目圧縮時の付与面圧2.0MPaにおける多孔質炭素電極基材の厚みとの差が0.1〜10μmの範囲にある、
多孔質炭素電極基材。 (もっと読む)


【課題】炭素短繊維の破断が少なく、導電性に優れた多孔質電極基材およびその製造方法を提供すること。
【解決手段】炭素短繊維(A)と、炭素繊維前駆体短繊維(b1)およびフィブリル状炭素前駆体繊維(b2)の少なくとも一方とを2次元平面内において分散させた前駆体シートを製造する工程(1)と、表面算術平均粗さが2.0μm以下のフラットロールと、表面算術平均粗さが5.0μm以上20μm以下のエンボスロールとからなるロール対を一対以上有する連続式加熱ロールプレス装置を用いて、前記前駆体シートを加熱加圧処理する工程(2)と、加熱加圧した前駆体シートを1000℃以上の温度で炭素化処理する工程(3)と、を有する多孔質電極基材の製造方法。および該製造方法で得られる多孔質電極基材。 (もっと読む)


【課題】 排水性およびガス拡散性、及び取扱い性に優れる水分管理シート、この水分管理シートを用いたガス拡散シート、膜−電極接合体及び固体高分子形燃料電池を提供すること。
【解決手段】 固体高分子形燃料電池の触媒層と隣接して配置して使用する、自立した水分管理シートであり、水分管理シートは疎水性有機樹脂の少なくとも内部に導電性粒子を含有する導電性繊維を含有する不織布からなる。本発明のガス拡散シート、膜−電極接合体及び固体高分子形燃料電池は前記水分管理シートを備えている。 (もっと読む)


【課題】触媒層と導電性多孔質層との密着性が高い膜−電極接合体を提供することを目的とする。
【解決手段】本発明の膜−電極接合体は、触媒層、電解質膜及び触媒層が順次積層された触媒層−電解質膜積層体の片面又は両面に、燃料電池用ガス拡散層が積層されている燃料電池用膜−電極接合体であって、前記燃料電池用ガス拡散層は、導電性多孔質層を有し、且つ、前記触媒層と前記導電性多孔質層とが接するように前記触媒層−電解質膜積層体上に積層されており、前記導電性多孔質層は、少なくとも導電性炭素粒子、並びにガラス転移温度が、触媒層中に含まれる電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす高分子重合体を含み、前記導電性多孔質層中の前記高分子重合体は、触媒層と接しない表面よりも触媒層と接する表面に密に存在するものである。 (もっと読む)


【課題】触媒層と導電性多孔質層との密着性が高い膜−電極接合体を提供することを目的とする。
【解決手段】本発明の膜−電極接合体は、触媒層、電解質膜及び触媒層が順次積層された触媒層−電解質膜積層体の片面又は両面に、燃料電池用ガス拡散層が積層されている燃料電池用膜−電極接合体であって、前記燃料電池用ガス拡散層は、導電性多孔質層を有し、且つ、前記触媒層と前記導電性多孔質層とが接するように前記触媒層−電解質膜積層体上に積層されており、前記導電性多孔質層は、少なくとも導電性炭素粒子、並びにガラス転移温度が、触媒層中に含まれる電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす高分子重合体を含み、前記導電性多孔質層中の前記高分子重合体は、触媒層と接しない表面よりも触媒層と接する表面に密に存在するものである。 (もっと読む)


【課題】本発明は、カーボン粒子と樹脂とを含む撥水層が形成されたガス拡散層を製造するに際し、不具合の発生を抑制しつつ、比較的短時間で、ガス拡散層基材の表面に撥水層を形成する技術を提供することを目的とする。
【解決手段】燃料電池に用いられるガス拡散層の製造方法は、ガス拡散層基材を準備する準備工程と、ガス拡散層基材の一方の面に、撥水性樹脂の粒子と導電性粒子とを含むペーストを塗工する塗工工程と、ペーストが塗工されたガス拡散層基材をペーストが塗工された塗工面を重力方向下向きにした状態で撥水性樹脂の融点以上の温度によって加熱する加熱工程と、を備える。 (もっと読む)


【課題】
比較的広い面積および比較的多いアイテムの数について連続的に操作することができ、既知の製造方法の上記欠点を有さない、特にクロルアルカリ電気分解に用いるための酸素消費電極の製造方法、および該方法、特に非粘着性剤の複雑な使用により製造された電極を見出すこと。
【解決手段】
圧縮およびプレスを、プレスローラーがタングステンカーバイドで被覆された、0.5μm以下の表面粗さを有するローラープレスを用いて行う。 (もっと読む)


【課題】低コストで高性能な電気化学デバイス用触媒層付電極の製造に好適な触媒層形成用組成物、及び、それを使用する触媒層の製造方法を提供する。
【解決手段】電気化学デバイスの触媒層付電極の触媒層形成に用いられる触媒層形成用組成物であって、イオン伝導性の導入が可能なビニルモノマー、金属微粒子の前駆体である金属化合物、及び、炭素担体を含むものであり、前記ビニルモノマーは、放射線照射により重合して、イオン伝導性ポリマーを形成するものであり、前記金属化合物は、放射線照射により還元されて、金属微粒子を形成するものであることとする。 (もっと読む)


【課題】電極に固定化したニコチンアミドアデニンジヌクレオチドおよび/またはその誘導体の溶出を防止することができ、溶出による性能劣化を防止することができる燃料電池およびその製造方法を提供する。
【解決手段】正極と負極とがプロトン伝導体を介して対向した構造を有し、酵素を用いて燃料から電子を取り出すように構成されるバイオ燃料電池において、負極を、大きさが2nm以上100nm以下の細孔を表面に有する炭素および/または無機化合物を有し、この炭素および/または無機化合物にニコチンアミドアデニンジヌクレオチドおよび/またはその誘導体が固定化されている電極により構成する。炭素として炭素粒子、炭素シートまたは炭素ファイバーを用いる。炭素粒子としては、バイオカーボン、ケッチェンブラック、活性炭などを用いる。この炭素に酵素反応に必要な酵素を、必要に応じてピレン誘導体などを介して固定化させてもよい。 (もっと読む)


【課題】三相界面の面積が大きく触媒粒子表面利用率が高い、燃料電池用電極の製造方法を提供する。
【解決手段】燃料電池用電極の製造方法は、電解質前駆体溶液を調製する工程と、炭素粒子からなる多孔体S11と触媒粒子で構成される触媒多孔構造体に電解質前駆体を塗布する工程S12と、触媒多孔構造体に塗布された電解質前駆体を重合することで上記多孔構造体中において電解質層を形成する工程S13と、を有する。高分子電解質が導入できない細孔構造中の触媒粒子近傍まで、低分子状態の電解質前駆体は隈無く配置され、その後重縮合反応を経由した電解質前駆体の高分子量化が進行し、プロトン輸送パスとなる電解質層を触媒粒子近傍まで高密度高分散形成することができるので、三相界面の面積が大きくなり、触媒粒子表面利用率が高くなる。 (もっと読む)


【課題】リチウムイオン電池等の電池やキャパシタ、燃料電池の集電体に適した耐熱性、耐電解性等の耐食性に優れた金属多孔体の製造方法の提供。
【解決手段】導電処理を行った多孔体基材にニッケルめっきを行ってニッケルめっき層を形成した後に洗浄し、次いで該ニッケルめっき層の表面を乾燥させることなく連続して、少なくともニッケルとタングステンを含む合金をめっきして合金めっき層を形成する工程と、酸化雰囲気中で加熱することにより前記多孔体基材を除去する工程と、その後に還元雰囲気中で熱処理を行って金属を還元する工程と、を有し、前記多孔体基材を除去する工程と金属を還元する工程とにおいて、合金めっき層中のタングステンを前記ニッケルめっき層中に拡散させることを特徴とする、少なくともニッケルとタングステンからなる金属多孔体の製造方法。 (もっと読む)


【課題】製造コストが低く、剥離の問題が生じず、厚さ方向で炭素短繊維の質量比率に傾斜をつけることで、発電時に生成水を効率よく排出し、かつ十分なガス透気度及び導電性を持った多孔質電極基材及びその製造方法を提供する。
【解決手段】以下の(1)〜(3)の工程を含む、多孔質電極基材の製造方法。
(1)炭素短繊維(A)と、炭素繊維前駆体短繊維(b)及び/又はフィブリル状炭素前駆体繊維(b´)とを分散して前駆体シートを製造する工程。
(2)組成の異なる前駆体シートを2枚以上積層し、交絡処理して積層した前駆体シートを製造する工程。
(3)積層した前駆体シートを1000℃以上で炭素化する工程。 (もっと読む)


【課題】PEM燃料電池で使用するための疎水性特性を向上させた拡散媒体を提供する。
【解決手段】拡散媒体34,36,38,40は、多孔性伝導性基質と、該基質に付着された第1の疎水性フルオロカーボンポリマーコーティングと、該基質に付着された疎水性シリコンポリマーを含む第2のコーティングとから作られる。該基質は、好ましくは、カーボンファイバーペーパーであり、疎水性フルオロカーボンポリマーは、PTFE又は類似のポリマーであり、シリコンは湿気硬化性を有する。 (もっと読む)


【課題】シート強度が大きく、製造コストが低く、かつ十分なガス透気度及び導電性を持った多孔質電極基材及びその製造方法を提供する。
【解決手段】炭素短繊維(A)と、1種類以上の酸化繊維前駆体短繊維(b)及び/又は1種類以上のフィブリル状酸化繊維前駆体繊維(b’)とを2次元平面内において分散させた前駆体シートを製造し、交絡処理して3次元交絡構造を形成した後、炭素粉とフッ素系樹脂とを含浸させて、さらに150℃以上400℃未満の温度で熱処理することで、多孔質電極基材を製造する。この多孔質電極基材は、3次元構造体中に分散された炭素短繊維(A)同士が、酸化繊維(B)によって接合され、さらに前記炭素短繊維(A)と前記酸化繊維(B)とが炭素粉とフッ素系樹脂とにより接合された3次元交絡構造体からなる。 (もっと読む)


21 - 40 / 901