説明

Fターム[5H018EE05]の内容

無消耗性電極 (49,684) | 電極の構成物質 (16,030) | 元素、単体 (8,152) | 炭素、カーボン (3,922)

Fターム[5H018EE05]の下位に属するFターム

Fターム[5H018EE05]に分類される特許

301 - 320 / 2,403


【課題】全体に十分な密度で均一に金属を担持させて発電効率を向上する。
【解決手段】基材フィルム上にポリマ粒子の薄膜層を形成するポリマ層形成ステップS1と、該ポリマ層形成ステップS1によりポリマ粒子の薄膜層が形成された基材フィルムを焼成して炭化することにより導電性フィルムを形成する焼成ステップS2と、該焼成ステップS2により形成された導電性フィルムに金属微粒子を分散させて担持させる金属担持ステップS3と、該金属担持ステップS3により金属が担持された導電性フィルムを微小隙間を空けて厚さ方向に複数枚積層する積層ステップS4とを備える燃料電池用電極の製造方法を提供する。 (もっと読む)


【課題】触媒利用率および発電効率の向上が高い膜電極接合体を提供する。
【解決手段】実施の形態に係る膜電極接合体50は、固体高分子電解質膜20と、固体高分子電解質膜20の一方の面に設けられたアノード触媒層26、固体高分子電解質膜20の他方の面に設けられたカソード触媒層30とを備える。アノード触媒層26は、固体高分子電解質膜20に接するアノード触媒層26aとアノードガス拡散層28に接するアノード触媒層26bの2層からなる。また、カソード触媒層30は、固体高分子電解質膜20に接するカソード触媒層30aとカソードガス拡散層32に接するカソード触媒層30bの2層からなる。アノード触媒層26aおよびカソード触媒層30aの触媒密度は、0.3g/cm以上1.5g/cm以下であり、アノード触媒層26bおよびカソード触媒層30bの触媒密度は、0.1g/cm以上1.0g/cm以下である。 (もっと読む)


【課題】貴金属触媒粒子の強酸性条件下での溶解散逸を防ぐことで、触媒粒子の粒径増大や脱落を抑制して、発電特性が長期に渡って維持される電極を製造することができる、燃料電池用電極の製造方法を提供する。
【解決手段】本発明の燃料電池用電極の製造方法は、分子内にアルキルスルホン酸基と(RO)Si−(式中、Rは水素原子又は炭素数1〜4のアルキル基を表す)で表される基とを有する化合物と、溶媒とを混合して得られる白金溶出抑制材料を調製する工程と、触媒粒子を少なくとも表面に備える触媒粉体と前記白金溶出抑制材料とを混合してスラリーを調製する工程と、減圧乾燥処理および加熱乾燥処理を行うことにより、前記スラリー中で前記白金溶出抑制材料の重合反応を行うことで、前記白金溶出抑制材料の重合体からなる白金溶出抑制層を前記触媒粉体の表面上に形成して、燃料電池用電極を得る工程と、を含む。
(もっと読む)


【課題】本発明は、膜電極接合体の製造方法に関し、電極転写時に電解質膜の亀裂の発生を防止可能な膜電極接合体の製造方法を提供することを目的とする。
【解決手段】CNT基板16上には、その表面に対してCNTが垂直配向されCNT電極24を形成している。CNT基板16を、スペーサ治具14の開口部に設置し、更に、CNT基板16の周縁を覆うように、マスキング治具18を設置した後に、電解質膜26にCNT電極24を転写する。従って、転写時に、CNT基板16の基板エッジをマスキング治具18で覆うことができるので、転写時に基板エッジが電解質膜26に接触することを抑制できる。電解質膜26に接触することを抑制できれば、転写時に電解質膜26に亀裂が発生することを確実に抑制できる。 (もっと読む)


【課題】燃料電池の電気化学エネルギーデバイスの一時的な高出力運転時の不安定動作を改善することを課題とする。
【解決手段】メタノール酸化反応を促進する触媒13を担持した電気伝導体15と、高メタノール濃度下でメタノールを吸蔵し、かつ、低メタノール濃度下ではメタノールを放出する性能を持つ多孔質構造体14と、を含む触媒層11を有する触媒電極、および、この触媒電極を燃料極10として用いる燃料電池1、および、この燃料電池1を動力源として用いる機器を提供する。 (もっと読む)


【課題】資源枯渇が懸念される白金触媒を使用せず、常温で運転でき、1セル当たりの発電量が高い燃料電池を提供することにある。また、構造が簡易で、安価な燃料電池を提供する。
【解決手段】燃料極(アノード)、拡散シート、空気極(カソード)からなる燃料電池であって、筒状のセラミックフィルタに囲まれた反応室内で、両性金属に酸性又はアルカリ性の水溶液を加えて発生させた水素を、前記セラミックフィルタ、前記燃料極(アノード)、前記拡散シートを介して拡散させ、前記空気極(カソード)において酸化することを特徴とする。 (もっと読む)


【課題】気孔率や透気度を最適化でき、もって排水性が良好となり、触媒層との界面接合強度も十分に保証され、さらにはひび割れの発生が解消されて、電解質膜収縮抑制効果やフラッティング抑制効果に優れ、耐久性の向上を図ることのできるマイクロポーラス層と、このマイクロポーラス層を具備するガス拡散層、およびこのガス拡散層を具備する燃料電池セルを提供する。
【解決手段】燃料電池セル10の拡散層基材1と触媒層5の間に介層されるマイクロポーラス層2であって、平均粒径が異なる3種類以上のカーボン粒子2a,2b,2cが相互に略均等となる量で配合され、これらとフッ素樹脂2dとから形成されている。 (もっと読む)


【課題】従来よりも優れたサイクル特性やエネルギー効率などを発揮できる新規なリチウム空気二次電池及びその空気極作製方法の提供。
【解決手段】カーボンを主体とする空気極1と、金属リチウムまたはリチウム含有物質を含む負極2と、前記空気極1と前記負極2に接する有機電解液3とを有し、前記空気極1にルテニウム(Ru)酸化物を添加する。これによって、充放電の電圧差が小さく、かつ充放電サイクルを繰り返しても放電容量の低下を抑えることができるため、従来よりも優れたサイクル特性やエネルギー効率などを発揮できる。 (もっと読む)


【課題】大量生産可能で触媒担体の粒子径が小さい固体高分子型燃料電池触媒およびその製造方法を提供する。
【解決手段】カーボン層で被覆された酸化チタン触媒担体上に白金触媒物質が担持された固体高分子型燃料電池触媒を製造するために、酸化チタン粒子とPVAと水とを混合攪拌してペーストを作製し、還元焼成して粉砕微粉化してカーボン層で被覆された酸化チタン粒子を作製し、エタノールおよび塩化白金酸溶液に混合して加熱乾留し、白金触媒担持粒体を作製する。
【効果】酸化チタン触媒担体の粒径の増大を招くことなく還元処理が可能で工業的に大量生産が可能である。 (もっと読む)


【課題】高温、低加湿時における膜電極接合体の保持能力を高め、高温、低加湿時における燃料電池の発電をより安定にする。
【解決手段】膜電極接合体50は、固体高分子電解質膜20、アノード22、およびカソード24を有する。アノード22は、触媒層26およびガス拡散層28からなる積層体を有する。カソード24は、触媒層30およびガス拡散層32からなる積層体を有する。ガス拡散層32は、カソードガス拡散基材、およびカソードガス拡散基材に塗布された第1の微細孔層33aおよび第2の微細孔層33bを触媒層30の側からこの順で有する。第1の微細孔層33aおよび第2の微細孔層33bは、それぞれ、導電性粉末と撥水剤とを混練して得られるペースト状の混練物で構成されている。第2の微細孔層33bに含まれる導電性粉末としてのカーボンの比表面積が、第1の微細孔層33aに含まれる導電性粉末としてのカーボンの比表面積に比べて大きい。 (もっと読む)


【課題】本発明は、触媒利用率の測定方法に関し、アイオノマーの被覆状態を測定できる新規な測定方法を提供することを目的とする。
【解決手段】図8(a)に示すように、測定対象電極30を純水に浸した場合、電解質膜34側から移動してきたプロトンは、アイオノマー303内だけでなく、水中も移動可能であるため、アイオノマー303に被覆されていない白金触媒302b上にも吸着できる。一方、図8(b)に示すように、測定対象電極30をフッ素溶媒に浸した場合、プロトンは、アイオノマー303内部のみ移動でき、白金触媒302bに吸着できない。そこで、純水に浸した場合の吸着電気量QH2O、フッ素溶媒に浸した場合の吸着電気量Qを求め、吸着電気量QH2Oに対する吸着電気量Qの百分率からアイオノマー303に被覆された白金触媒302aがどの程度存在するかを白金被覆率として求める。 (もっと読む)


【課題】カソードのドライアウトを緩和して、炭化水素膜と界面接触するカソードでの電極抵抗を下げた高出力密度DMFC(直接メタノール燃料電池)を提供する。
【解決手段】アノード12の微多孔層4Aのフルオロポリマーの充填率を約5重量%〜約25重量%とし、かつ微多孔層用4Aのバインダーとしてポリスルホン、カルボキシル化ポリスチレンまたはナイロンを用いることでアノード12からカソードへ14への水の移動性を高める。さらに、カソード14が低当量重量アイオノマー、および、吸湿性材料を含むことでカソード14のドライアウトを緩和する。 (もっと読む)


【課題】本発明は、電極触媒の製造方法に関し、触媒担持カーボンやアイオノマー同士の凝集を防止しつつ、これらを良好に分散させることが可能な電極触媒の製造方法を提供することを目的とする。
【解決手段】本実施形態の製造方法は、(1)電極材料調製工程、(2)破砕分散工程、(3)塗布、乾燥工程、の各工程を含む。(2)破砕分散工程において、触媒インクを供給しながらローター14を回転させると、撹拌スペース16のビーズ18間において、流動速度差が生じる。これにより、ビーズ18間にせん断力やずり応力、摩擦などを発生させて、触媒インクを破砕分散できる。特に本工程によれば、図2(B)に示すように、隣り合うビーズ18を逆方向に流動させることができる。したがって、これらビーズ18間において、主としてせん断力を生じさせることができる。 (もっと読む)


【課題】電極触媒層内部の細孔容積を効果的に増加させて水の排出とガスの拡散性を担保し,発電性能の向上に寄与し得る,燃料電池の電極触媒層用ペーストの製造方法を提供する。
【解決手段】触媒を担持したカーボンと高分子電解質とを準備する準備ステップS1と,この準備ステップS1で準備した前記カーボン及び高分子電解質に溶剤を加えたものを,剪断力を加えながら攪拌する第1攪拌ステップS4と,この第1攪拌ステップS4で攪拌した前記カーボン,高分子電解質及び溶剤の混合物に炭素繊維を加えて攪拌する第2攪拌ステップS6とを実行する。 (もっと読む)


【課題】導電性およびガス透過性が共に高く且つフッ素を用いなくとも撥水性の高いガス拡散電極用基材を、量産性が高く低コストで製造可能な製造方法を提供する。
【解決手段】炭素繊維、導電性微粒子、アクリルシリコン系樹脂が混合されたスラリーを乾燥して、その炭素繊維に炭素微粒子およびアクリルシリコン系樹脂が付着した粉体状材料を生成する粉体材料生成工程(乾燥工程S3、造粒工程S4)と、その粉体状材料を下型ダイス内に充填してアクリルシリコン系樹脂の軟化温度よりも高い温度で加熱圧縮することで、炭素繊維が導電性微粒子を介在させた状態でアクリルシリコン系樹脂により結合されたガス拡散電極用基材を成形するホットプレス工程S5とにより、比較的単純な工程でガス拡散電極用基材が製造される。 (もっと読む)


【課題】本発明の課題は、発電性能の向上に大きく寄与する細孔径の細孔が多くを占めるように電極触媒層の細孔分布をコントロールすることができる燃料電池用膜電極構造体及びその製造方法を提供することにある。
【解決手段】本発明の燃料電池用膜電極構造体1は、カソード4の電極触媒層42が、触媒担持体と、繊維状カーボンとを含み、レーザ回折式粒度分布測定装置を使用して測定した繊維長が0.6μm未満の前記繊維状カーボンの体積割合が、前記繊維状カーボンの全体の体積に対して、0.5%以下であることを特徴とする。 (もっと読む)


【課題】発電性能を向上させる燃料電池触媒層の製造方法を提供する。
【解決手段】燃料電池触媒層の製造方法は、プロトン伝導体とPtCo/C触媒金属担持担体との質量比が0.3以上の触媒層を作製する製造方法であり、プロトン伝導体とPtCo/C触媒金属担持担体との質量比が0.2〜0.3となるようにPtCo/C触媒金属担持担体とプロトン伝導体とを混合し混合液を作製する工程(S100)と、混合液中の成分を分散させ分散後の分散液中に溶出したコバルト溶出率が、分散液に含まれるPtCo/C触媒金属担持担体中の全コバルト含有量に対して4質量%以下であるように分散液を作製する工程(S102)と、分散液にプロトン伝導体を追加添加して触媒インクを作製する工程(S104)と、触媒インクを用いて触媒層を形成する工程(S106)と、を有する。 (もっと読む)


【課題】触媒粒子の含有量が少ない場合であっても、高電流密度域で酸素不足による性能低下を防ぎ、所望の出力を得ることができる燃料電池用触媒層を得る。
【解決手段】燃料電池用触媒層は、複数の一次粒子を凝集して形成された二次粒子からなる導電性担体と、導電性担体に分散して担持された触媒粒子と、導電性担体および触媒粒子を被覆するアイオノマーとを有する燃料電池用触媒層であって、触媒粒子の粒子量が0.05mg/cmから0.15mg/cmの範囲でかつ、導電性担体の平均二次粒子径が100nmから180nmの範囲でかつ、アイオノマーの被膜厚さが6nmから16nmの範囲である構成を有する。これにより、二次粒子1個当たりの酸素量を減らしてアイオノマーの表面に酸素が集中するのを抑制し、かつ酸素のアイオノマー内における拡散距離を短くして、触媒層における酸素の濃度拡散律速を緩和する。 (もっと読む)


【課題】発電性能に優れた燃料電池を構成する電極触媒用の触媒担持担体の製造方法と、この方法で得られた触媒担持担体を使用してなる電極触媒の製造方法を提供する。
【解決手段】分散溶媒W内に、導電性担体1と、触媒金属塩2と、高分子電解質3と、を投入し、攪拌して溶液を生成し、該溶液内で触媒金属塩2と高分子電解質3を共存させる第1の工程、触媒金属塩2を還元して導電性担体1の表面に触媒2’を担持させると同時に、該導電性担体1の表面に高分子電解質からなる皮膜3’を被覆させて触媒担持担体10を得る第2の工程、からなる、触媒担持担体の製造方法である。また、この製造方法で得られた触媒担持担体と、別途の高分子電解質を別途の分散溶媒に投入し、攪拌して触媒溶液を生成する、電極触媒の製造方法である。 (もっと読む)


本発明は、触媒の製造方法であって、前記触媒が触媒活性物質及び炭素含有担体を含み、第1工程において炭素含有担体を金属塩溶液に含浸させ、その後、金属塩溶液を含浸した炭素含有担体を不活性雰囲気中で少なくとも1500℃の温度に加熱して金属炭化物層を形成し、最後に金属炭化物層を備えた炭素含有担体に触媒活性材料を施す触媒の製造方法に関する。
さらに、本発明はこの方法により製造された触媒であって、炭素含有担体及び触媒活性物質を含み、この炭素含有担体が金属炭化物層を含有し、且つその触媒活性物質が金属炭化物層を備えた炭素含有担体に施された触媒を提供する。 (もっと読む)


301 - 320 / 2,403