説明

Fターム[5H026EE18]の内容

燃料電池(本体) (95,789) | 構成物質 (18,438) | 有機化合物 (7,175) | 樹脂、プラスチツク、ポリマー、重合体 (6,090)

Fターム[5H026EE18]の下位に属するFターム

Fターム[5H026EE18]に分類される特許

4,641 - 4,660 / 4,735


本発明は、2主表面を有するフレキシブルグラファイトシート(147)を製造するための方法であって、剥離グラファイトの粒子を圧縮してシートを形成し、樹脂組成物を前記シートに含浸させて樹脂含浸シートを形成し、前記樹脂含浸シートを硬化させ、その後、前記硬化させた樹脂含浸シートを処理して、前記シートの上又はその中に構造体を設ける工程を含む方法を提供する。
(もっと読む)


少なくとも二つのポリマーセグメントを含む共重合体であって、少なくとも一つのポリマーセグメントが下記一般式(1)で示されるホスホリル誘導体を含み、少なくとも一つのポリマーセグメントが下記一般式(1)で示されるホスホリル誘導体を含まないことを特徴とする共重合体を用いることにより、安価で化学的安定性に優れ、機械的強度が高く、さらにハロゲン元素を含まず、廃棄時おける環境付加の低い高分子および組成物、成形体を提供する。
【化1】


(Rは、各々独立に、炭化水素,芳香環,水素,金属イオン,オニウムイオンを示す。)
(もっと読む)


高い性能が得られる燃料電池用電極触媒を提供すること。
本発明の燃料電池用電極触媒は、担体と、それに担持された触媒金属とを備え、担体は、その表面がプロトン解離性官 能基で修飾され、かつBET法による比表面積が900〜2170m2/gである。 (もっと読む)


本発明は、燃料電池の固体電解質として、式(1)または(2)の構造を有する材料を使用するものである。燃料の透過性が低い電解質膜および優れたイオン伝導度と放電容量とを示す燃料電池が得られる。


(式(1)中WはNまたはCである。)。 (もっと読む)


本発明は、鉱酸でドープされた高分子膜と2つの電極とを備える膜電極ユニットに関し、該ユニットは、該高分子膜が、少なくとも1つの窒素原子を含む少なくとも1つのポリマーを含み、そして少なくとも1つの電極が、少なくとも1つの貴金属と電気化学列に従う少なくとも1つのベース金属とから形成される触媒を含むことを特徴とする。 (もっと読む)


ガス拡散層の表面形状を最適化することで、耐微小ショート性および耐フラッディング特性の良好なガス拡散層を提供する。 電極触媒を含む触媒層と、電子伝導性とガス拡散性とを有するガス拡散層とを少なくとも有するガス拡散電極用のガス拡散層において、触媒層の側に配置されるべき第1の面よりも第1の面に対向する第2の面のほうを粗く形成し、第1の面のJIS B 0601の測定法による表面粗さの最大高さRyが10〜50とし、かつ、第2の面のJIS B 0601の測定法による表面粗さの最大高さRyを100〜500とする。 (もっと読む)


【課題】表面上に流れ領域を備えた導電性流体分配エレメント(68、70)を含む、燃料電池(2)用のアッセンブリを提供する。流れ領域は、ガス状反応体を燃料電池(2)に搬送するための複数のチャンネル(74)を含む。
【解決手段】本アッセンブリでは、更に、拡散媒体(34 40)として役立つ導電性部材がエレメント(68、70)の表面に配置されている。エレメント(68、70)のチャンネル(74)は、様々な配向で形成された複数の側壁(78)を含み、これらの側壁(78)の配向によりチャンネル(74)の断面形状が形成され、水収集領域が導電性流体分配エレメント(68、70)と導電性部材との界面及びチャンネルの底部分に形成される。 (もっと読む)


【課題】
固体高分子形燃料電池の電解質膜およびバインダーとして、耐酸化性が高く、高温でも脱スルホンが起こりにくい、かつプロトン伝導性の高い、新規な高分子電解質を提供する。
【解決手段】
スルホン酸基を有する芳香環が電子吸引性連結基で連なる構造の側鎖を有する高分子スルホン酸からなる高分子電解質である。側鎖は、分岐側鎖でも非分岐側鎖でもよいが、分岐側鎖が好ましい。電子吸引性連結基は、−CO−、−CONH−、−(CF)p−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO− から選ばれるものである。そして、少なくともスルホン酸基を2個以上導入された側鎖を有する。 (もっと読む)


触媒被覆拡散媒体(CCDM)として用意される、燃料電池用の膜電極組立体(MEA)(10)を製作する技法。膜電極組立体(MEA)は微孔質層(20、28)を有する拡散媒体層(18、26)を含む。触媒層(22、30)は、触媒層(22、30)が微孔質層の全表面を覆うように微孔質層上に堆積される。アイオノマー層(24、32)は触媒層上に噴霧される。パーフルオロ膜(16)は、膜電極組立体(MEA)のアノード側の1つのCCDMと、膜電極組立体(MEA)のカソード側の別のCCDMとの間にサンドイッチ状にはさまれ、この場合、アイオノマー噴霧層は膜に対面する。
(もっと読む)


固体高分子形燃料電池等の電気化学装置用途に利用できる、プロトン伝導性が高く、DMFCとして用いた場合にメタノールの透過阻止性能に優れ、かつ燃料電池として運転した場合の耐久性に優れる安価な電解質膜を提供する。
メタノールを含む有機溶媒および水に対して実質的に膨潤しない多孔性基材の細孔内に、プロトン伝導性を有する電解質ポリマーを充填してなる電解質膜であって、当該膜は25℃で1時間水に浸漬させた時の下記式(a)で表わされる水膨潤率が、0.1〜2.0であることを特徴とする電解質膜。
水膨潤率=(A―B)/(B−C)‥(a)
但し、Aは水に浸漬後の電解質膜質量、Bは乾燥時の電解質膜質量、Cは多孔性基材の質量を示す。 (もっと読む)


【解決手段】
膜電極アッセンブリを製作するための技術に関する。該技術は、陽子伝導膜を提供し、触媒層を形成するため膜上に直接触媒インクを噴霧する、各工程を備える。触媒インクは、数回の通過に亘って膜上に噴霧することができ、インクは、ヒートランプにより噴霧プロセスの間に膜上で乾燥される。一実施例では、触媒インクは、所望の燃料電池性能のため、例えば0.8/1等、適切な炭素対イオノマー比率の成分を含んでいる。別の実施例では、触媒インクは、所望の燃料電池性能のための適切な炭素対イオノマー比率に対して少なすぎる成分しか含んでいない。最終的に適切な炭素対イオノマー比率を提供するため、触媒層が膜上に噴霧される前に、イオノマー層が、膜上に噴霧される。 (もっと読む)


均一な吸収およびドーピング剤の良好な保持を特徴とし、ドーピングされる場合に高温での高い機械的安定性を保証する、燃料電池用膜。そのような膜は、少なくとも1種のポリマーからなり、その窒素原子は、多塩基性無機オキソ酸の誘導体の中心原子に化学的に結合されている。膜は、水のないポリマー溶液とオキソ酸誘導体とから、膜鋳型内に導入された溶液を、自己支持膜が形成されるまで加熱し、次いで後者を温度調整することによって、製造される。本発明の膜と、ドーピング剤としてリン酸とを含む、膜電極ユニット(MEA)を有する本発明の燃料電池は、例えば、測定周波数1000Hz、動作温度160℃、水素のガス流170mL/minおよび空気に対して570mL/minにおいて、0.5〜1Ωcmのインピーダンスを有する。これらは、高温高分子電解質膜燃料電池として、少なくとも250℃までの動作温度で使用できる。
(もっと読む)


【課題】漏れに対する封止が改良された電気化学セル(10)は、セル中の部品のあわせ表面へ接着接合された硬化封止剤組成物(40)を具備する。
【解決手段】硬化封止剤組成物は、重合性(メタ)アクリレート成分およびホウ素含有開始剤の反応生成物を含んでいる。そのような封止剤組成物は、電気化学セル(10)中に配置された樹脂または樹脂を含有する基体の接着剤として特に有用である。 (もっと読む)


燃料カートリッジ1501が、筐体1502と、液体燃料124を収容する内部容器1503の二重構造からなり、筐体が1502、耐衝撃性を有する樹脂により構成され、内部容器1503が、液体燃料に対する耐性を有する樹脂により構成されている。 (もっと読む)


本発明は、オフセットした二つの平面に形成された吸入マニホールド及び排出マニホールドを持つ平らな流れ場設計に関する。吸入マニホールドから排出マニホールドを通って比較的短い通路が延びており、この通路は、吸入マニホールドからこの通路を通ってMEAの反応面を横切って排出マニホールドまで、特異な流れ場分布を提供するように膜電極アッセンブリ(MEA)の反応面で終端する。 (もっと読む)


燃料カートリッジ1361の壁部1372に、燃料電池本体100に液体燃料124を導出する燃料導出孔1363と、燃料導入用の開口部とが設けられ、この燃料導入用の開口部に着脱可能な燃料注入部1365が取り付けられている。使用後の燃料カートリッジ1361の燃料注入部136を壁部1372から取り外して、開口部から液体燃料124を補充し、再利用に供することができる。 (もっと読む)


【課題】高分子電解質膜(PEM)内の水和水を測定するための方法及び装置を提供する。
【解決手段】本方法及び装置は、PEM上の入力部位に向けられた入力放射線源と、入力部位に相対して出力部位に応答可能に配置されてPEM内の水の水和レベルを示す入力放射線における検知可能な変化を測定する検出器とを使用する。本方法は、PEM内に入力部位を形成する段階と、放射線源(34)を入力部位内に発射してPEM材料と相互作用させる段階と、PEM材料との入力放射線の相互作用(40)を検出する段階と、PEM(50)内の水の水和レベルを示す相互作用の結果として入力放射線内の検知可能な変化を測定する段階とによってPEMの水和を測定する。 (もっと読む)


燃料電池(40)が、電解質(16´)の対向する両面に取り付けられた第1の触媒(12´)と、第2の触媒(14´)と、前記第1の触媒(12´)に連通するように取り付けられるとともに、複数のリブ(32A´、32B´、32C´、32D´、32E´)の間に複数の流路(30A´、30B´、30C´、30D´)を画定する第1の流れ場(26´)と、この第1の流れ場(26´)と前記第1の触媒(12´)との間に取り付けられるバッキング層(42)と、を含んでなる。バッキング層(42)は、カーボンブラック、疎水性ポリマ、および不規則に分散化した炭素繊維(44)を含む。炭素繊維(44)は隣接する第1の流れ場(26´)に画定される流路(30A´、30B´、30C´、30D´)の幅(46)の少なくとも2倍の長さをもつ。バッキング層(42)が周知の基板(22)および拡散層(18)に取って代わる。
(もっと読む)


成形多部品フローフィールド構造は、第1のポリマーを含む導電性材料で形成された成形フローフィールド板を含む。成形フレームは、フローフィールド板の周囲に配置され、第2のポリマーを含む非導電性材料で形成されている。成形フローフィールド板とフレームは、好ましくは、単極フローフィールド構造を画定している。マニホルドが成形フレームに形成され、成形ガスケット機構が、マニホルドの周囲に近接配置されている。成形カップリング機構を形成して、フレームから延在させ、フローフィールド構造を他の単極フローフィールド構造と結合して、単極フローフィールド構造の連続ウェブを画定するように構成されている。
(もっと読む)


本発明は、ナノ多孔性又はメゾ多孔性パラジウム及びイオン交換電解質を包含する触媒系、該触媒系及び触媒を製造する方法、及び該触媒又は触媒系を用いる有機及び/又は無機分子を酸化又は還元する方法を提供する。 (もっと読む)


4,641 - 4,660 / 4,735