説明

Fターム[5H115TE03]の内容

車両の電気的な推進・制動 (204,712) | ハイブリット車用エンジンの状態検出 (4,490) | スロットル開度 (271)

Fターム[5H115TE03]に分類される特許

1 - 20 / 271


【課題】リチウムイオン二次電池を搭載した車両において、Li析出を抑制するための制御を実行した上で、回生発電による回収エネルギを確保しつつ車両制動力の瞬間的な変動によって車両運転性が低下しないようにする。
【解決手段】HV−ECU302は、リチウムイオン二次電池であるバッテリ18におけるLi析出を抑制するために、バッテリ18の充放電履歴に基づいて充電電力上限値を調整する。さらに、HV−ECU302は、調整された充電電力上限値の範囲内でブレーキペダル操作に対応した要求制動力に対する、制動装置10による液圧制動力と、第2MG60による回生制動力との分担を決定するブレーキ協調制御を実行する。Li析出を抑制するために充電電力上限値を制限する際における充電電力上限値の制限度合は、制動装置10に液圧を供給するためのブレーキ液圧回路80での液圧応答レートの検出値に応じて可変に設定される。 (もっと読む)


【課題】クラッチの接続・非接続にかかわらずフリクションを抑えて回生量を十分に大きくとることができるハイブリッド車両における回生システムを提供する。
【解決手段】エンジン22と、モータ106と、エンジン22からの動力を後輪WRに伝達させるかを切り換えるクラッチ104と、クラッチ104を制御して、該クラッチ104の接続、非接続を行うクラッチアクチュエータ120と、エンジン22及びモータ106の駆動制御を行うとともに、クラッチアクチュエータ120を制御するMG−ECU102とを備えたハイブリッド車両における回生システム100において、MG−ECU102は、クラッチ104が接続の状態の場合は、モータ106を駆動制御してモータ106に回生を行わせるとともに、エンジン22を駆動制御して運転状態にし、クラッチ104が非接続の状態の場合は、モータ106を駆動制御して前記モータ106に回生を行わせる。 (もっと読む)


【課題】内燃機関の排気を浄化する浄化触媒が未活性であるときに、内燃機関からのトルク出力を確保しつつ、できる限りHC排出量を低減させる。
【解決手段】排気浄化触媒が未活性であると共に目標トルクTe*がトルク閾値Terefよりも大きいときには、圧縮行程中の燃焼噴射が停止され、筒内燃料噴射弁に供給される燃料圧力が圧縮行程中に燃焼室内に燃料を噴射して成層燃焼を実行可能とする基準燃料圧力Pflim以上になるように高圧ポンプが制御され(ステップS170,S180)、ハイブリッド自動車10が走行中であって目標トルクTe*がトルク閾値Teref以下であるときにも、筒内燃料噴射弁に供給される燃料圧力が基準燃料圧力Pflim以上になるように高圧ポンプが制御される(ステップS150,S160)。 (もっと読む)


【課題】発電用のエンジンを搭載したレンジエクステンダ型の電気自動車において、排出ガス浄化率を確保しながら低コスト化の要求を満たすことができるようにする。
【解決手段】発電用のエンジン10は、要求発電量等に応じて運転モードを切り換えるとき以外は定常運転することができるため、過渡運転時の空燃比制御の応答性をあまり必要としない。この点に着目して、触媒38の下流側に排出ガスセンサ39(例えば酸素センサ)を設置し、この排出ガスセンサ39の出力に基づいて空燃比フィードバック制御を実行する。これにより、触媒の上流側に排出ガスセンサを設置する場合に比べて、排出ガスセンサ39の出力特性の変化(ばらつき)を小さくして、空燃比制御精度の低下を抑制することができ、触媒38の排出ガス浄化率を確保することができる。また、触媒の上流側と下流側の両方に排出ガスセンサを設置する場合に比べて、低コスト化できる。 (もっと読む)


【課題】電池の電圧が規定値より小となるか、或いは電池の残容量が0となると、放電を停止し、さらにシステムの電源が維持できなくなったときシステムの電源を自動的に落としてシャットダウン状態とする。
【解決手段】電池モニタ11からの電池の電圧或いはSOCが規定値より小さいと判定されると、放電制御スイッチ22がオフとされる。端子T1およびT2間の電圧に対応する電圧Vxが制御部21のA/Dポートに入力され、その値が監視される。A/Dポートに入力された電圧Vxが規定値より小さいと判定されると、制御部21によってスイッチ回路12がオフとされ、電池モニタ11に対する電源が断たれる。これと共に、スイッチ制御信号S1によって、制御スイッチ25がオフとされる。その結果、DC−DCコンバータ24の動作が停止し、シャットダウンがなされる。 (もっと読む)


【課題】二次電池の温度が低いときにその蓄電割合が過剰に高くなるのを抑制する。
【解決手段】電池温度Tbが所定温度未満のときに、電池温度Tbが所定温度以上のときに比してモータからの動力だけを用いて走行する電動走行が行なわれにくくなると共にエンジンからの動力とモータからの動力とを用いて走行するハイブリッド走行が行なわれやすくなるものにおいて、バッテリの蓄電割合SOCに応じて蓄電割合調整用パワーPbsocを設定し(S300)、電池温度Tbが所定温度未満のときに所定温度以上のときに比して小さな値を嵩上げパワーPbηに設定し(S310)、これらの和をバッテリの充放電用パワーPb*に設定する(S320)。そして、ハイブリッド走行によって走行するときには、充放電用パワーPb*を走行用パワーに加えたパワーがエンジンから出力されながら走行するようエンジンと二つのモータとを制御する。 (もっと読む)


【課題】モータジェネレータの出力トルクが低下するとエンジンの出力軸回転数が増大される車両において、燃料の消費量を低減する。
【解決手段】ハイブリッド車には、エンジンおよびモータジェネレータが駆動源として搭載される。モータジェネレータの出力トルクがより緩やかに零に近づくほどより零に近い値までモータジェネレータの出力トルクが零に近づくと、エンジンの出力軸回転数が増大される。 (もっと読む)


【課題】エンジンを始動する際の振動を抑制する。
【解決手段】エンジンを始動する際、始動開始時クランク角CRKiniがクランク角範囲A((−90°+nπ)以上(0°+nπ)以下の範囲)内にあるときにはエンジンのモータリングが開始された後にクランク角と所定クランク角とが一致するタイミングでのエンジンの回転数をトルク引き下げ開始回転数Nengに設定し、始動開始時クランク角CRKiniがクランク角範囲A外にあるときには始動開始時クランク角CKRiniがクランク角範囲A内であるときのトルク引き下げ開始回転数Nengより高く且つエンジンのモータリングを開始した後にクランク角と所定クランク角とが一致するタイミングでのエンジンの回転数をトルク引き下げ開始回転数Nengに設定し、トルク引き下げ開始回転数Nengで第1モータからのトルクが小さくなるよう第1モータを制御する。 (もっと読む)


【課題】内燃機関の始動後に吸気温を検出する吸気温検出センサと冷却水温を検出する冷却水温検出センサとの異常診断を行なうものにおいて、この異常診断をより適正に行なう。
【解決手段】エンジンを運転停止してモータからの動力だけで走行可能で、エンジンを始動した後(エンジンの運転中)に吸気温センサからの吸気温Tinと水温センサからの冷却水温Twとの比較によって両センサの異常診断を行なうものにおいて、イグニッションオンされてからエンジンの始動条件が初めて成立するまではエアフローメータの熱線への通電を行なわず(S220〜S240)、エンジンの始動条件が初めて成立したときに熱線への通電を開始する(S250)。 (もっと読む)


【課題】スロットルバルブ13およびクランク角検出手段35,36が付設された多気筒型エンジン1を搭載した車両の制御装置100,200において、エンジン始動毎のクランク角計測基準位置の検出タイミングのばらつきを無くす。
【解決手段】クランキング開始によりエンジン回転数Neが始動判定値X以上になったときにエンジン1が始動したと判定する始動判定手段と、エンジン1の始動判定後に要求のエンジン回転数Neを確保するために必要な吸入空気量を算出する吸入空気量算出手段と、クランキング開始から所定時間以内にクランク角検出手段35,36からクランク角計測基準信号を受けたときに前記始動判定手段による処理を実行させずに待機し、クランキング開始から前記所定時間の経過後にクランク角計測基準信号を受けたときに前記始動判定手段による処理を実行させる始動制御手段とを実行する。 (もっと読む)


【課題】モータ制御システムにおいて、矩形波制御方式からPWM制御方式への切替えを適時に行ってモータ過電流の発生を抑制する。
【解決手段】モータ制御システムは、バッテリ電圧をコンバータ35で必要に応じて昇圧してインバータ38に供給し、交流モータ14の運転条件に応じて、インバータ38の制御方式を矩形波制御、過変調PWM制御、正弦波PWM制御の間で選択的に設定する制御装置を備える。制御装置は、モータ電流の電流位相をdq平面上における閾値ラインと比較して矩形波制御方式からPWM制御方式への切り替えを行う制御方式切替部と、矩形波制御方式の実行中で且つインバータ入力電圧であるシステム電圧VHが所定閾値Vthrよりも小さいときにdq平面上における閾値ラインを進角側または低q軸電流側に変更する閾値変更部とを含む。 (もっと読む)


【課題】 エンジンアイドル時の振動や音を抑制することができるハイブリッド車両の制御装置を提供すること。
【解決手段】 第1締結要素が解放されているときには、エンジンのアイドル時の目標エンジン回転数をエンジンの燃費を高める第1目標アイドル回転数に設定し、第1締結要素が締結されているときには、エンジンのアイドル時の目標エンジン回転数をエンジンによる共振を抑制する第2目標アイドル回転数に設定するようにした。 (もっと読む)


【課題】自動変速機の入力軸に動力伝達可能に連結された電動機を備える車両用動力伝達装置において、コースト走行中に被駆動状態から駆動状態に切り替わる際に実行される回転同期制御を伴うコーストダウンシフトの際にガタ打ちに伴うショックを抑制する。
【解決手段】車両10が被駆動状態であるときに変速機入力トルクTATを零に向かって制御する際にその変速機入力トルクTATが零に近づくに伴って、車両状態に基づいて変速機入力トルク変化率が抑制されるので、ガタ打ちに伴う振動が抑制される。また、そのガタ打ちを起振源とするガタ打ち後の振動も抑制される。よって、コースト走行中に被駆動状態から駆動状態に切り替わる際に実行される回転同期制御を伴うコーストダウンシフト時において、ガタ打ちに伴うショック(すなわちガタ打ちショックやガタ打ち後の振動的なショック)や歯打ち音が抑制される。 (もっと読む)


【課題】動力伝達モードを切替可能なハイブリッド車両の運転効率を高める。
【解決手段】ハイブリッド車両の制御装置(100)は、内燃機関(200)及び電動機(MG1)を含む動力要素と、駆動軸(500)と、動力伝達機構(300)と、クラッチ(710)とを備えたハイブリッド車両を制御する。ハイブリッド車両の制御装置は、ハイブリッド車両が後進走行モードであるか否かを判定する後進判定手段(110)と、内燃機関が運転しているか否かを判定する内燃機関運転判定手段(120)と、クラッチの係合状態を検出する係合状態検出手段(130)と、ハイブリッド車両が後進走行モードであり、内燃機関が停止しており、クラッチが係合されていない場合に、クラッチを係合すると共に内燃機関を始動させるように制御する内燃機関始動手段(140)とを備える。 (もっと読む)


【課題】発電機の発電時に内燃機関の出力を制御する内燃機関の出力制御装置において、内燃機関をエンリッチ領域で運転する機会を減らし、運転効率や燃費性能を向上しつつ、排ガスの悪化を防止すること。
【解決手段】内燃機関により駆動される発電機の発電電力又は駆動用バッテリに貯蓄された電力により車両を推進可能な駆動モータを備えた電動車両にて、内燃機関の運転状態をストイキ運転からエンリッチ運転に移る境界に対応する機関出力判定値(β)を設定し、駆動用バッテリの検知されたSOC値に応じて内燃機関の出力を機関出力判定値(β)以下に制限する。 (もっと読む)


【課題】回生制動時のトルク変動を抑制する。
【解決手段】エンジンの吸気弁及び排気弁のバルブ作動角の中心位相角を変更可能な可変動弁機構を制御する制御装置は、電動モータによる回生制動時に、吸気弁の中心位相角を、上死点を含む角度範囲内で予め決められた第1角度(例えば、上死点TDC)に変更すると共に、排気弁の中心位相角を、下死点を含む角度範囲内で予め決められた第2角度(例えば、下死点BDC)に変更する。また、制御装置は、排気弁の中心位相角を、上死点を含む角度範囲内で予め決められた所定角度(例えば、上死点)に変更してもよい。そして、排気行程の後半に吸気弁を開弁させて筒内へと導入される空気量を抑制し、筒内圧力の最大値及び最小値を小さくすることで、トルク変動を抑制する。 (もっと読む)


【課題】発電により自動変速機に入力される走行トルクが減少しても良好な車両走行性能および良好な変速フィーリングが得られ、変速制御装置の記憶部や演算処理部の負担の増加を抑制できる自動変速機の変速制御方法を提供する。
【解決手段】エンジンと発電電動機と自動変速機と変速制御装置とを備えたハイブリッド車両用パワートレイン装置で、エンジンからの駆動により車両の走行と発電電動機の発電とを並行して実施するときの自動変速機の変速制御方法であって、発電電力に必要な発電トルクを演算する工程S5と、エンジンの出力トルクを演算する工程S6と、出力トルクから発電トルクを減算して車両の走行に使用される走行トルクを演算する工程S7と、走行トルクに基づいて補正した発電時スロットル開度を演算する工程S8と、発電時スロットル開度に基づいて自動変速機を制御する変速制御工程S9と、を有する。 (もっと読む)


【課題】低速時のハイブリッド車両に大きな駆動力が求められる場合に、適切な運転条件を実現する
【解決手段】ハイブリッド車両の制御装置(100)は、第1電動機(SG)、第2電動機(MG)及び内燃機関(200)を含む動力要素と、駆動軸と、動力伝達機構(300)と、クラッチ(Cs)とを備えたハイブリッド車両(1)を制御する。ハイブリッド車両の制御装置は、動力伝達モードを、クラッチを切り離す第1モード、クラッチを係合する第2モード、クラッチを滑り係合する第3モードに切替え可能な切替手段(140)と、車速が第1閾値より低いか否かを判定する第1判定手段(110)と、要求トルクが第2閾値より大きいか否かを判定する第2判定手段(120)と、車速が第1閾値より低く且つ要求トルクが第2閾値より大きい場合に、動力伝達モードを第3モードに切替える制御手段(130)とを備える。 (もっと読む)


【課題】ギヤの歯打ち音を防止するためにエンジンの出力軸回転数を増大させるときに運転者に与える違和感を大きくせずに、燃費の悪化を抑制する。
【解決手段】駆動源としてのモータジェネレータのトルクが低下すると、第1運転線によって定められる回転数から第2運転線によって定められる回転数までエンジン回転数が増大される。第1運転線は、車速およびエンジン回転数のうちのいずれかが高いほど、第2運転線から大きく離間する。 (もっと読む)


【課題】内燃機関の浄化触媒を暖機する際に、運転者の加速要求により適正に対応する。
【解決手段】浄化触媒の暖機要求がなされたときにおいて、差分パワーΔPrが判定用パワーC1を超えているときには(ステップS170)、要求パワーPr*と冷却水温Twと差分パワーΔPrが判定用パワーC1以下であるときに用いられる第1補正係数設定用マップより補正係数Tarpeを大きくなる傾向に設定する第2補正係数設定用マップとを用いて補正係数Tarpeを設定し(ステップS190)、基本開度Tatrqに補正係数Tarpeを乗じたものを目標スロットル開度TH*に設定し(ステップS200)、エンジンのスロットルバルブの開度を目標スロットル開度にした状態でエンジンを運転しながら要求パワーPr*に基づくパワーにより走行するようエンジンと2つのモータとを制御する(ステップS210〜S250)。 (もっと読む)


1 - 20 / 271