説明

Fターム[5H505HA16]の内容

Fターム[5H505HA16]に分類される特許

101 - 120 / 192


【課題】モータ駆動制御システムにおいて、矩形波制御からPWM制御への切換えの際に、制御モードの切換え遅れに起因して発生する電流乱れを抑制する。
【解決手段】モータ駆動制御システム100を制御するECU300は、矩形波制御モードおよびPWM制御モードのいずれかによってインバータ140を制御して交流電動機200を駆動する。ECU300は、制御モード選択部330と、交流電動機200のモータ電流をA/D変換するA/D変換部340とを備える。A/D変換部340は、矩形波制御モードの場合に、交流電動機200の回転速度が急激に低下したときは、交流電動機200の電気角に基づく実行周期よりも速い実行周期に従って動作する。制御モード選択部330は、矩形波制御モードの場合に、モータ電流の電流乱れが発生したことに応じて、矩形波制御モードからPWM制御モードへ切換える。 (もっと読む)


【課題】モータジェネレータ10を用いた平滑コンデンサ22の放電制御によってモータジェネレータ10が逆回転する等の不都合が生じること。
【解決手段】放電開始角保持部42は、平滑コンデンサ22の放電制御開始時におけるモータジェネレータ10の回転角度θ(開始角θ0)を保持する。放電用電圧設定部44は、無効電流の位相と想定される位相δを有する指令電圧vdr,vqrを設定する。3相変換部38では、この指令電圧vdr,vqrを、開始角θ0に基づき3相の指令電圧vur,vvr,vwrに変換する。この電圧となるようにインバータIVが操作されることで平滑コンデンサ22が放電制御される。放電開始に先立って、モータジェネレータ10の回転速度が規定速度を上回る場合には、モータジェネレータ10の停止制御を行う。 (もっと読む)


【課題】永久磁石を備えるモータジェネレータ10の減磁の有無を判断するための処理手段を適合するに際し、その工数が多くなること。
【解決手段】モータジェネレータ10は、クラッチC1を介して駆動輪14に機械的に連結されて且つクラッチC2を介してエンジン16に機械的に連結されている。車両の起動スイッチがオンされた直後、クラッチC1,C2を解除した状態において、電流フィードバック制御によってモータジェネレータ10のトルクを制御し、この際の実際のトルクが要求トルクを下回ることに基づき、永久磁石の磁束が減少したと判断する。 (もっと読む)


【課題】インバータIVのスイッチング素子Swp,Swnに短絡異常が生じる際にその異常箇所を特定することが困難なこと。
【解決手段】短絡異常が生じる場合、リレーSMR1,SMR2をオフ操作することで、インバータIVと高電圧バッテリ20とを切り離す。その後、V相の電流を検出する電流センサ26およびW相の電流を検出する電流センサ28を用いて、短絡異常箇所を特定する。電流センサ26,28によって検出される電流がこれらセンサの検出可能範囲を超える場合、インバータIVを構成するスイッチング素子Swp、Swnのうちの1つずつをオン操作し、その際の電流が変化することに基づき、オン操作したスイッチング素子に直列接続されたスイッチング素子に短絡異常が生じたと特定する。 (もっと読む)


【課題】誘導電動機を安定に動作するよう制御するための誘導電動機制御装置等を提供することである。
【解決手段】MERS100u,100v及び100wは、交流電源VSが発生する電圧の位相を値θsetだけ変動させたものに相当する電圧を生成して、この電圧と交流電源VSが発生する電圧との和に相当する電圧を誘導電動機Mへと印加する。制御部200は、電圧検出部VMが検出した負荷電圧の基本波成分の実効値が所定値へと収束するようにθsetを決定し、このθsetの値に基づいて各ゲート信号の遷移のタイミングを決定し、各MERSに供給する。 (もっと読む)


【課題】モータの停止を確認する判断処理や、リレーを遮断するためのいわば割り込み動作などの処理をマイクロコンピュータユニットに担わせることなく、ドライバ内蔵型モータが実質的に回転しないときに、不要な電力をドライバ内蔵型モータに供給しない。
【解決手段】ファンモータユニット9に内蔵されたファンドライバ91には、スイッチK1が設けられた電源線L1を介して給電される。回転速度指令Vsppに応じたアナログ指令値VspがDA変換回路8から出力される。アナログ指令値Vspが所定値Vspb未満のときに、電圧制御回路10はスイッチK1を非導通とする。 (もっと読む)


【課題】受電電圧に対して安定的な直流励磁式拘束通電出力を実現して冷媒寝込み現象を高効率に抑制するとともに、該安定的な直流励磁式拘束通電出力を実現することでコストアップしてしまうことを抑制することを目的としている。
【解決手段】インバーター制御装置7は、圧縮機表面温度検出手段10の検出結果及び電流検出手段9の検出結果と、に基づいて圧縮機駆動用モーター4の相抵抗値を決定し、該決定された相抵抗値及び直流母線電圧検出手段8の検出結果に基づいて拘束通電電圧を決定し、拘束通電電圧に基づいてインバーター主回路3を制御するものである。 (もっと読む)


【課題】モデル予測制御を行うものにあって、スイッチング状態の切り替えに起因して制御性が低下するおそれがあること。
【解決手段】操作状態設定部31によって設定される電圧ベクトルと、電流センサ16によって検出される電流に基づき、予測部33では、予測電流ide,iqeを算出する。一方、評価部34では、指令電流idr,iqrと予測電流ide,iqeとの乖離が大きいほど評価が低いとする評価関数Jを用いて、評価の最も高くなる電圧ベクトルViを選択し、操作部26に出力する。操作部26では、選択された電圧ベクトルViとなるようにインバータIVを操作する。スイッチング状態の切り替えがなされてから所定の長さを有する時間に渡って、電流の検出値に代えて前回の予測値を用いる。 (もっと読む)


【課題】モータの巻線抵抗やリアクタンスなどのモータ定数を使用せずにモータを駆動することができる電動機の駆動装置を提供する。
【解決手段】本発明の駆動装置は、インバータ10の三相出力電流をトルク電流および磁化電流に変換し、該トルク電流および磁化電流を制御するベクトル制御部11を備える。ベクトル制御部11は、トルク電流指令値とトルク電流との偏差に基づいてトルク電圧指令値を決定するトルク電圧制御部21と、磁化電流指令値と磁化電流との偏差に基づいて磁化電圧指令値を決定する磁化電圧制御部22と、インバータ10の出力電圧と目標出力電圧との偏差に基づいて磁化電流指令値を決定する目標磁化電流決定部26と、目標出力電圧を決定する目標出力電圧決定部27とを備える。目標出力電圧決定部27は、目標出力電圧と角速度との関係を示すV/ωパターンを記憶しており、該V/ωパターンに従って角速度から目標出力電圧を決定する。 (もっと読む)


【課題】矩形波制御の適用時に交流電動機に制御外乱が生じても、過電流や過電圧の発生を防止する。
【解決手段】矩形波制御によって制御された交流電動機の運転領域が、低回転速度領域を含む所定領域330内である場合には、回転速度の急変が発生したときに、電流位相による制御モード切換判定を行うことなく、矩形波制御からPWM制御へ制御モードが切換えられる。一方、交流電動機の運転領域が、所定領域330外である場合には、電流位相に基づいて、矩形波制御からPWM制御へ制御モードを切換えるか否かが判定される。 (もっと読む)


【課題】装置の小型化を図ること。
【解決手段】制御回路100は、CPU10と、CPU10で動作させる第1のプログラムを記憶するフラッシュメモリ22を有するCPU20と、第1のプログラムをCPU10に読み込ませる第2のプログラムを記憶するROM33とを有している。CPU10は、読み出した第2のプログラムを実行することで第1のプログラムの読み込み準備完了をCPU20に通知する。CPU20は、第1のプログラムの読み込み準備完了に基づいて、CPU10への第1のプログラムの転送を開始する。 (もっと読む)


【課題】鎖交磁束の波形に含まれる高調波成分の影響を除去してトルクリプルを抑制できるモータ駆動制御装置を提供する。
【解決手段】モータ駆動制御装置において、回転子の角度検出値に基づいて変化するd軸交流信号をコイルに流すd軸電流の目標値であるd軸電流目標値に加算し、前記角度検出値に基づいて変化しd軸交流信号に対して1/4周期の位相差をもつq軸交流信号をコイルに流すq軸電流の目標値であるq軸電流目標値に加算する加算手段を有する。そして、d軸交流信号が加算されたd軸電流目標値に追従するようにd軸電流を制御し、q軸交流信号が加算されたq軸電流目標値に追従するようにq軸電流を制御する。 (もっと読む)


【課題】矩形波制御に基づく制御の実行時に処理負荷を適切に低減することが可能な制御装置を実現する。
【解決手段】制御モード決定部20と、電圧指令値決定部33,43と、制御信号生成部23と、制御モード決定部20により決定された制御モードがパルス幅変調制御モードである場合に、制御信号生成部23の演算周期を、キャリア周期の1/2に設定された基準演算周期のN倍(Nは1以上の整数)の第一周期に設定するとともに、電圧指令値決定部43の演算周期を、第一周期のM倍(Mは2以上の整数)の第二周期に設定する演算周期設定部21と、を備え、演算周期設定部21は、制御モード決定部20により決定された制御モードが矩形波制御モードである場合に、電圧指令値決定部33の演算周期及び制御信号生成部23の演算周期の双方を、第二周期に設定する。 (もっと読む)


【課題】車載主機としてモータジェネレータ10を備えるものにあって、車両の接近に注意を促すことが困難なこと。
【解決手段】操作状態決定部34の評価関数Jは、電圧ベクトルVi(i=0〜7)のそれぞれに対応する予測電流ide,iqeと指令電流idr,iqrとの差が小さいほど、該当する電圧ベクトルを高く評価する。評価関数Jの評価が最も高い電圧ベクトルが次回の操作状態に設定される。車両の低速度走行時において、操作状態の更新可能周期を低下させることで、モータジェネレータ10やインバータIVの生じるノイズを低周波側にシフトさせる。 (もっと読む)


【課題】インバータを用いた交流電動機制御において、効率を低下させることなくインバータのスイッチングによるサージ電圧を抑制する。
【解決手段】交流制御指令(Vu)とキャリア信号(Vcw)との電圧比較に基づいて、インバータ各相のスイッチング素子のオンオフが制御される。交流制御指令(Vu)は、三相変調のための本来の交流電圧指令(Vu♯)に、3次高調波電圧(Vuh)を重畳することによって得られる。3次高調波電圧(Vuh)は、相電流の特定タイミング(tp1、tp2)を含む所定の電流位相期間(T1)において、当該相でのスイッチング素子のオンオフが固定されるように設定される。 (もっと読む)


【課題】モータジェネレータに対する要求トルクTrと電気角速度ωとを入力としてインバータIVの出力電圧ベクトルのノルムを設定する処理を行なう場合、ノルムの設定精度によってモータジェネレータの制御量の制御性が低下すること。
【解決手段】ノルム設定部31では、要求トルクTrと電気角速度ωとに基づき基本ノルムVn1を設定する。補正量算出部32では、d軸電流のフィードバック操作量として補正量ΔVnを算出する。補正部33では、基本ノルムVn1を補正量ΔVnによって補正することでノルムVnを算出する。位相設定部34では、q軸電流のフィードバック操作量として位相δを設定する。操作信号生成部35では、ノルムVnと位相δとに基づきインバータの操作信号を生成する。 (もっと読む)


【課題】コイル電流の独立した制御を可能とするインバータ回路を備えた交流モータを提供する。
【解決手段】協働して回転磁界12を発生する3相のステータコイル11U,11V,11Wと、直流電圧+E,−Eおよび接地電圧GNDが印加されて、ステータコイル11U,11V,11Wの各々に直流電流i,i,iを独立して通電するインバータ回路20と、直流電流i,i,iの大きさを所定の周期で制御する制御信号を、インバータ回路20に送信するDSP24と、回転磁界12により回転するロータ13とを備え、制御信号が、第1のスイッチ素子21UU,21VU,21WUおよび第2のスイッチ素子21UD,21VD,21WDの何れか一方をオン状態または両方をオフ状態とすることで、ステータコイル11U,11V,11Wに直流電流i,i,iを独立して通電し、回転磁界12を発生させる。 (もっと読む)


【課題】コンデンサとインバータとの間の電気経路を開閉するリレーが開状態とされる状況下、モータジェネレータの通電制御によってコンデンサの充電電圧を規定電圧以下に放電する際、モータジェネレータが回転し続けることを防止する。
【解決手段】指令電流設定部30によって設定される指令電流idr,iqrは、固定座標変換部50によってαβ座標系に変換された後、β成分の符号が反転され、回転座標変換部54によってdq座標系に変換される。これにより、dq変換部54の出力は、指令電流設定部30によって設定される指令電流idr,iqrをα軸に対して線対称変換したものとなる。放電制御に際しては、対称変換された指令電流にフィードバック制御される。 (もっと読む)


【課題】外風によりファンが回転して、当該ファンの回転により発生するモータの起電力からモータ駆動制御装置を保護することができ、モータ巻き線のターン数を増加させることができ、モータ電流を低減することができるモータ駆動制御装置を得る。
【解決手段】ファンを回転させるモータ7を駆動するモータ駆動制御装置であって、直流電圧を交流電圧に変換してモータ7に印加するインバータ回路5と、インバータ回路5を制御してモータ7の運転を制御する制御手段とを備え、インバータ回路5は、モータ7の巻き線の各相の両端毎にスイッチング素子を有し、制御手段は、スイッチング素子のスイッチパターンを制御して、モータ7の運転を制御するものである。 (もっと読む)


【課題】モデル予測制御を行なうものにあって、モデル誤差によって制御量の制御性が低下することを抑制する。
【解決手段】電気角速度ωが閾値速度ωF以上であることを条件に(ステップS32:YES)、q軸の予測電流と実際の電流との誤差(予測誤差Δiq)をゼロにフィードバック制御すべくd軸インダクタンスLdを操作する(ステップS34)。また、d軸の予測電流と実際の電流との誤差(予測誤差Δid)をゼロにフィードバック制御すべくq軸インダクタンスLqを操作する(ステップS36)。そして、予測誤差Δid,iqがゼロとなった際のd軸インダクタンスLdやq軸インダクタンスLqを学習値として記憶する(ステップS38)。 (もっと読む)


101 - 120 / 192