説明

国際特許分類[A61B8/00]の内容

生活必需品 (1,310,238) | 医学または獣医学;衛生学 (978,171) | 診断;手術;個人識別 (80,876) | 超音波,音波または亜音波を用いることによる診断 (6,683)

国際特許分類[A61B8/00]の下位に属する分類

国際特許分類[A61B8/00]に分類される特許

4,001 - 4,010 / 4,062


本発明のいくつかの実施形態の方法は、ユーザが、患者の体内の表面下標的部位に医療器具を誘導するのを支援する方法である。この方法は、少なくとも1つの術中超音波画像を生成する。本方法は、超音波画像上の標的部位を示す。本方法は、基準座標系中の標的部位の3D座標を決定する。本方法は、(1)基準座標系中の器具の位置を追跡し、(2)表示装置上に、基準座標系中のツールに関する位置から見えるような視野を投影し、および(3)表示された視野上に、位置に対応する標的部位の印を投影する。いくつかの実施形態では、視野は、器具の位置からだけでなく、基準座標系中における器具の既知の方向性からの視界である。印を観察することによって、ユーザは、印が表示された視野内に所定の状態で置かれるか保持されるように、器具を移動させることによって、標的部位に向けて器具を誘導することができる。 (もっと読む)


ボリューム領域を走査する超音波診断撮像システムにおいて、サンプリング帯域幅又は空間分解能は、開口サイズ、波長及び所望の出力帯域幅又はボリューム撮像レートにより決定される達成可能なトランスジューサ分解能に適合される。例示としての実施形態においては、これは、音響サンプリング分解能、所望の出力ライン密度及びボリューム撮像レートの間のより適切な関係を与えるようにボリューム領域を捜査するために用いられるビームの空間点広がり関数を制御することにより行われる。このような最適化の有利点は、用いるものより高い分解能を取得しないことにより情報移動効率及び情報コンテンツを最大化すること並びに空間帯域幅を制限するように開口関数を用いてよりてきせつなサンプリング関数を与えることである。
(もっと読む)


高さ寸法が比較的大きく、空間及び時間的に高さ方向アパーチャのバイアス制御が行われる、3Dイメージングに用いられる容量形マイクロ加工トランスデューサ・アレイは、画像の断面図が機械的走査によるものではなく、電子的走査によるものであり、空間的に極めて正確に位置合わせされるという点を除くと、機械的並進と同じ利点をもたらすことになる。この3DcMUTは、高さ方向バイアス制御と高さ方向における凸面状の湾曲が組み合わせられると、電子的走査による探索容積が増大し、その結果、視野が改善されることになる。さらにまた、3DcMUTと高さ方向セクションのフレネル集束を組み合わせて、高さ方向集束を改善することも可能である。 (もっと読む)


体内のボリューム対象物の量を定める計測が、その対象物の2つの異なるプレーン(210、214)の同時のバイプレーン画像を超音波を用いて取得することによりなされる。対応するボリューム対象物の境界は自動境界検出を用いてトレースされる。境界トレースが、ボリューム対象物のグラフィックモデル(220)を演算するためにそれらのプレーンの空間的関係において用いられる。グラフィックモデル(220)のボリュームがディスクのルールにより演算され、時間と共に変化するボリュームのグラフィック表示又は数値表示が表示される。ユーザインタフェースは、リアルタイムのバイプレーン画像、即ち、リアルタイムのグラフィックモデル(220)及び量を定める計測の両方を有する。
(もっと読む)


本発明は、多次元データ集合(2)において予め決定可能な領域(3)を表すための方法及び装置に関する。前記データ集合(2)は、特に、検査されるべき対象物の三次元又は四次元画像データから構成されている。前記画像データは、対象物の一つ又は幾つかの受信要素によって生成され、特に少なくとも1つの二次元断面(S)が前記予め決定可能な領域(3)を通って位置決めされると共に表示される。断面(S)は、ベクトル(4)によって多次元データ集合(2)内に配置される少なくとも一つのベクトル平面及び/又はポインター平面(E1,E2)によって規定される。前記ベクトル又はポインターは、多次元データ集合(2)内及び/又は特に多次元データ集合(2)の二次元断面平面(S1,S2)上における、少なくとも一つのベクトル平面(E1,E2)及び、ベクトル及び/又はポインター(4)の操作によって固定される。好ましくは、ベクトル(4)は、予め決定可能な方向と長さを有する方向ベクトル(即ち、アロー)であり、予め決定可能な領域(3)に沿って延びる。

(もっと読む)


D次元空間内の複数の点から成るドメインに対応する複数の輝度から成るディジタル画像中の管状構造を配向する方法を提供する。この方法は画像ドメイン内の1つの点を選択し(101)、選択された点の近傍において画像の勾配を計算し(102)、選択された点における基本構造を計算し(102)、選択された点の構造テンソルを求め(103)、構造テンソルの固有値を見つける(104)ステップを含む。最小固有値(105)に対応する固有ベクトルは管状構造と整列する。管状構造と整列する固有ベクトルによって画定される軸を中心とするカートホイール投影を計算(106)すればよい。
(もっと読む)


結腸のディジタル画像におけるポリープの識別方法が提供され、結腸のディジタル画像は3次元空間内のボクセルのドメインに対応する複数の強度から成る。本発明による方法は、画像に3つの互いに直交する軸のセットを付与するステップと、画像の軸に関して異なる方位にある複数の切断面を付与するステップと、画像の各ボクセルについて、中心ボクセルのまわりに切断面の各々を心出しするステップ(101)と、画像の各ボクセルのまわりの複数の切断面の各々について、結腸との切断面の交差を決定し、前記交差内での切断面のトレースを調べるステップ(102)と、各切断面のトレースが小さく丸い場合、交差におけるそれらのボクセルを以後の分析のためにマークするステップ(103)とを含む。
(もっと読む)


本発明は、心臓の治療すべき範囲の準備された電気解剖学的3Dマッピングデータがカテーテル療法の実施中に可視化される心臓における電気生理学的カテーテル療法の視覚的支援方法および装置に関する。カテーテル療法の実施前に断層撮影による3D画像化法により治療すべき範囲の3D画像データが検出され、3D画像データからセグメンテーションによって治療すべき範囲における対象の3D表面形状が抽出され、電気解剖学的3Dマッピングデータと少なくとも3D表面形状を形成する3D画像データとがレジストレーションによって位置正しくかつ寸法正しく関連付けられ、例えばカテーテル療法の実施中に互いに重ね合わされた可視化される。本発明による方法および装置は、心臓における電気生理学的カテーテル療法の実施時における操作者の改善された方位決めを可能にする。
(もっと読む)


本発明は、心臓の治療すべき範囲の準備された電気解剖学的3Dマッピングデータがカテーテル療法実施中に可視化される心臓における電気生理学的カテーテル療法の視覚的支援方法および装置に関する。カテーテル療法の実施前に断層撮影による3D画像化法により治療すべき範囲を含んでいる身体部位の3D画像データが検出される。これらの3D画像データから治療すべき範囲またはその重要部分の3D画像データが抽出されて、選択された画像3D画像データが得られる。準備された電気解剖学的3Dマッピングデータおよび選択された3D画像データが最終的に位置正しくかつ寸法正しく関連付けされ、例えばカテーテルアブレーションの実施中に並べて可視化される。方法および装置は心臓におけるカテーテル療法の実施時における操作者の方位決めを改善する。
(もっと読む)


人体内の対象領域の少なくとも一つのパラメータの非侵襲的モニタリングに使用される方法とシステムを提示する。当該システムは、測定ユニットと制御ユニットを備える。測定ユニットは、照射アセンブリ(101A)と光検出アセンブリ(101B)とを有し、採集光を示す測定データを生成する光学ユニットと、所定の超音波周波数範囲の音波を発生するように構成された音響ユニット(110)と、を備える。測定ユニットは、所定の周波数範囲の音波が対象領域内で照射領域と重なり対象領域外の領域とは実質的に重ならず、かつ検出アセンブリが対象領域からの散乱光と対象領域外の領域からの散乱光を採集するという動作条件を提供する。測定データは、超音波で標識付けされた光の部分と標識付けされていない光の部分の両方を有する散乱光を示し、対象領域と対象領域外の領域のそれぞれの光応答を識別可能にする。
(もっと読む)


4,001 - 4,010 / 4,062