説明

国際特許分類[B62D117/00]の内容

処理操作;運輸 (1,245,546) | 鉄道以外の路面車両 (62,921) | 自動車;付随車 (46,083) | ハンドル角速度 (524)

国際特許分類[B62D117/00]に分類される特許

31 - 40 / 524


【課題】必要流量に応じた最適なポンプの駆動状態を達成可能なパワーステアリング装置を提供する。
【解決手段】第1のポンプMPの失陥時にも継続して操舵アシストを行うことができる。また、第1のポンプと第2のポンプSPとから共に作動液を供給することで、第1のポンプの固有吐出量を低減でき、第1のポンプの駆動負荷を低減することで、直進時のような必要流量が少ない状態における省エネ効果を向上することができる。 (もっと読む)


【課題】ドライバが、広い運転領域で操舵輪のグリップ状況を舵力インフォメーションとして舵力で感じとりながら安心して適切な運転を行う。
【解決手段】操舵制御部は、ハンドル角と車速に応じて車両の運動モデルに基づき目標横加速度Gytを算出し、実際の横加速度と目標横加速度Gytとの偏差(横加速度偏差)ΔGyを算出し、操舵速度の絶対値と車速とに応じて現在の操舵状態がドライバが舵力をフィードバックして操舵している状態か否か判定し、ドライバが舵力をフィードバックして操舵している状態と判定し、且つ、横加速度偏差ΔGyが予め設定しておいた設定値CG以上の場合は、車速と操舵トルクを基に設定する基本アシストトルクTbを増加する方向に補正して、この補正した基本アシストトルクTbをアシストトルクTaとしてモータ駆動部に出力する。 (もっと読む)


【課題】運転者の知覚特性に適合した操舵制御を行う。
【解決手段】操舵装置は、運転者が操舵ハンドルを操作する操作量に基づいて、車両が走行する道路の環境を特定する特定手段と、特定された環境に基づいて、操舵ハンドルに発生させる操舵減衰力を制御する制御手段とを備える。ダンピング制御部130は、基本ダンピング制御部131によって設定した基本ダンピングトルクTbと、調整ゲイン設定部1341によって道幅判定値に応じて設定した調整ゲインGaとの積をダンピングトルクとして設定する。 (もっと読む)


【課題】Uターンまたはフルターン時に操舵力を最小にすることができ、自動フルターンによってユーザの便宜性を増大することができるMDPSの自動フルターン作動制御方法を提供する。
【解決手段】本発明のMDPSの自動フルターン作動制御方法は、MDPSの自動フルターン作動条件を満たすか否かを判断する段階、MDPSの自動フルターン作動条件を満たす場合、MDPSをフルターンで操向する段階、MDPSの自動フルターン解除条件を満たすか否かを判断する段階、およびMDPSの自動フルターン解除条件を満たす場合、MDPSの自動フルターンを解除する段階を含み、MDPSの自動フルターン作動条件を満たすか否かを判断する段階は、MDPSの作動が正常であるかを判断する段階を含むことを特徴とする。 (もっと読む)


【課題】運転者の疲労状態により適した操舵反力に近づくように当該操舵反力を調整可能とすることを目的とする。
【解決手段】操舵反力用コントローラ6は、筋力検出部11と、疲労推定部12と、反力調整部13とを備える。筋力検出部11は、筋骨格モデルとアドミタンス計測手法をもちいて、運転者の肩部から手までに位置する腕の筋肉のうちから選択した複数の筋の筋力を推定する。そして、推定した複数の筋の疲労度と操作子の操舵状態とに基づき、操作子に付加する操舵反力を調整する。 (もっと読む)


【課題】 衝突回避時等における操舵性や安定性の向上等を実現した電動パワーステアリング装置を提供する。
【解決手段】 ステップS6で衝突回避支援装置25から緊急時フラグFemgが入力しているか否か(Femg=1であるか否か)を判定し、この判定がNoであればステップS7で通常時操舵角速度差DTωに所定の変換係数Kを乗じることによって操舵反力トルクベース値Trbを算出/設定し、YesであればステップS8で緊急時操舵角速度差DMωに所定の変換係数Kを乗じることによって操舵反力トルクベース値Trbを算出/設定する。 (もっと読む)


【課題】衝突回避時等における操舵性の向上を実現した電動パワーステアリング装置を提供する。
【解決手段】EPS−ECUは、ステップS24で実操舵角速度ωから第1通常時目標操舵角速度KTω1を減じることで第1通常時操舵角速度差DTω1を設定し、ステップS25で実操舵角速度ωから第1緊急時目標操舵角速度KMω1を減じることで第1緊急時操舵角速度差DMω1を設定する。次に、EPS−ECUは、ステップS26で衝突回避操舵フラグFesが1であるか否かを判定し、この判定がNoであれば(すなわち、通常操舵状態であれば)、ステップS27でDTω1を切増側操舵角速度差Dω1として採用する。一方、ステップS26の判定がYesであれば(すなわち、衝突回避操舵状態であれば)、ステップS27でDTω2を切増側操舵角速度差Dω1として採用する。 (もっと読む)


【課題】省エネルギに優れ、且つ耐久性を向上させることができる車両用操舵装置を提供する。
【解決手段】据え切り操舵や荷役同時操舵等の非省エネ操舵が行われると、認知手段としての警告灯が点灯され(ステップS5)、非省エネ操舵であること運転者に認知させる。目標操舵反力Th*の操舵角速度比例成分のゲインk2を2倍に増加し(ステップS6)、目標操舵反力Th*を増加補正する。操舵反力の増加により、運転者に非省エネ操舵をしていることを確実に気付かせる。反力制御部が、運転者に非省エネ操舵をしていることを認知させる認知手段として機能する。 (もっと読む)


【課題】スリップ発生時に生じるトルクステアを抑えられるパワーステアリング装置を提供する。
【解決手段】コントローラがパワーステアリング出力部に供給される作動油の流量を制御する車両のパワーステアリング装置であって、車両が雪道やぬかるみ等の滑りやすい路面上を走行する際に、左右の車輪の一方が路面に対して滑るスリップが生じるとスリップ時指令値I3が高まり、スリップ時指令値I3に基づいてパワーステアリング出力部に供給される作動油の流量が制御される構成とした。 (もっと読む)


【課題】自動操舵機構の有する過渡時における応答性の問題を適切に補償して、通常走行時の快適性を保つことはもちろん、理想のハンドリング性能を実現する。
【解決手段】制御ユニット50の操舵制御部20では、ハンドル角θHd、ハンドル角速度(dθHd/dt)により目標舵角δtを算出し、モータ回転角θMを算出して、このモータ回転角θMを、ギヤ、モータの慣性等に起因する振動を抑制する為、所定のローパスフィルタによる処理や不感帯処理を行って、モータ駆動部21に出力する。サス_ECU40では、ハンドル角速度(dθHd/dt)に基づいて、減衰力補正基本値Cpを設定し、減衰力補正値Cを算出して、ストローク速度(dST/dt)、減衰力補正値Cを基に減衰力Faを設定し、所定のローパスフィルタによる処理等を行って出力する。 (もっと読む)


31 - 40 / 524