説明

国際特許分類[C22C47/04]の内容

国際特許分類[C22C47/04]に分類される特許

21 - 30 / 41


【課題】炭素繊維複合金属材料の強度を確保しつつ、熱伝導率の向上及び軽量化を達成すること。
【解決手段】この炭素繊維複合金属材料1は、母相金属2中に、第1の炭素繊維3Aと第2の炭素繊維3Bとが配置される。第1の炭素繊維3Aと第2の炭素繊維3Bとは、繊維の伸長方向を一方向に揃えて、前記母相金属2中に配置される。また、第1の炭素繊維3Aの直径は、第2の炭素繊維3Bの直径よりも大きく設定される。第1の炭素繊維3A及び第2の炭素繊維3Bは、表面に母相金属2を構成する金属がめっきされ、その後、前記金属で表面が被覆された第1の炭素繊維3A及び第2の炭素繊維3Bを複数本束ねて焼結することにより、炭素繊維複合金属材料1が得られる。 (もっと読む)


【課題】効率的で工業規模での実施が簡単な、金属マトリックス複合体から作られた挿入物を有する管状部品の形成方法を提供すること。
【解決手段】本発明は、金属マトリックス複合体から作られその中にセラミック繊維が伸びる挿入物を含む管状部品の製造方法に関する。方法は、フィラメントバンドルのフィラメントが支持部品の一端部に近接して固定され、このフィラメントは互いに分離し、各フィラメントは金属シースで被覆されたセラミック繊維を含むステップと、バンドルの全てのフィラメントが支持部品の周囲に螺旋路に沿って巻かれるステップとを含む。 (もっと読む)


本発明は、金属質母材を備えた繊維複合材料及びその製造方法に関する。個々の繊維1を組合せて成る繊維質材料が、金属質母材の中に埋入されている。この金属質母材は、繊維1を囲繞しているメタライジング層2と、このメタライジング層2の上に形成された金属質最終層4とで構成されている。また更に、それらメタライジング層2と金属質最終層4との間に、金属質バインダ層3を設けるようにしてもよい。金属質最終層4は、1回または複数回のコーティング処理を実行することによって形成することができ、また様々な機械加工を施すことができる。 (もっと読む)


【課題】通電安定性、低交流損失、高臨界電流密度を実現した製造コストが低いパルス用NbTi超電導多芯線およびパルス用NbTi超電導成形撚線を提供する。
【解決手段】パルス用NbTi超電導多芯線10は安定化材からなる断面略円状の芯部16と、前記芯部の外周にNbTiフィラメント13が銅合金層12に埋設された複数の1次素線14がマトリクス状に形成されたフィラメント集合体15と、フィラメント集合体15の外周に配置された芯部16と同じ安定化材からなる安定化層17からなり、銅合金層12は、Ni、MnおよびSiのうち1種類以上を含む銅合金であり、かつ銅合金層12はフィラメント集合体15中のNbTiフィラメント13に対する体積比が0.3〜0.6である。 (もっと読む)


【課題】 耐久性および電気伝導性に共に優れた銀複合材料およびその製造方法を提供する。
【解決手段】 主として、銀と炭素繊維とを含む銀複合材料であって、銀のマトリックス中に、炭素繊維をランダムに分散した組織を有する銀複合材料とする。 (もっと読む)


【課題】炭素繊維を脆化させることなく均一に分散された炭素繊維強化アルミニウム複合材およびその製造方法を提供する。
【解決手段】 炭素繊維を金属でめっきする第1工程と、第1工程で得ためっき炭素繊維とアルミニウムまたはアルミニウム合金からなる金属粉末との混合物Sに粉体処理装置1によって、機械的エネルギーを付与し、複合化によりマトリックス金属粒子の表面がめっき炭素繊維で被覆された粉末状のアルミニウム複合材料を形成する第2工程と、第2工程で得た粉末状のアルミニウム複合材料を成形して固形化する第3工程とを行う。さらに、第3工程で固形化した炭素繊維強化アルミニウム複合材を塑性加工により成形する第4工程を行う。 (もっと読む)


【課題】マグネシウム基材の表面に酸化皮膜が形成されていても該マグネシウム基材の表面上に遷移金属層が強固に密着した複合材料を提供すること。
【解決手段】マグネシウム基材および遷移金属層を含む複合材料であって、マグネシウム基材に対して親和性を有するマグネシウム親和層および遷移金属層に対して親和性を有する遷移金属親和層を有し、遷移金属親和層上にマグネシウム親和層が形成された金属層含有炭素繊維がマグネシウム基材に含有されるとともに、遷移金属親和層が露出した金属層含有炭素繊維がマグネシウム基材の表面上に突出し、遷移金属層がその突出した金属層含有炭素繊維を包埋してマグネシウム基材上に形成されてなる複合材料。 (もっと読む)


【課題】強化材添加に伴って実施する混練時間を短縮することができる製造方法を提供することを課題とする。
【解決手段】図(a)において、Mg材料に無数のカーボンナノ材料をまぶしたような形態の混合体13を準備し、Al−Mn合金材料12B又はZn材料12Cに無数のカーボンナノ材料11をまぶしたような形態の混合体13B又は混合体13Cを準備する。(b)において、加熱手段21を備える溶解炉20に、混合体13、混合体13B及び混合体13Cを同時又は順次投入して、溶解する。これで、複合金属合金の溶湯22を、得ることができる。
【効果】溶解工程では金属材料は完全に溶融状態にする。溶融状態であれば、半溶融状態に比較して、速やかにカーボンナノ材料を溶湯に分散させることができる。 (もっと読む)


【課題】より高い強度のカーボンナノ複合金属成形品を得ることのできる改良技術を提供することを課題とする。
【解決手段】(a):カーボンナノ材料11及び金属粉末12を準備する。(b):予備混合を実施する。(c):メカニカルアロイ法で、カーボンナノ材料11及び金属粉末12を本格的に混練する。(d):以上により、金属粉末12に無数のカーボンナノ材料11をまぶしたような形態のカーボンナノ複合金属粉末13を得る。(e):ダイス15にカーボンナノ複合金属粉末13を充填する。(f):上パンチ16をダイス15に挿入し、150℃程度の温度に保ちながら、カーボンナノ複合金属粉末13を押し固める。これで、予備成形品17を得ることができる。金属粉末にカーボンナノ材料をまぶすことができ、カーボンナノ材料の再凝集を抑制することができる。 (もっと読む)


【課題】 本発明は、カーボンナノファイバーを効率よく利用でき、全体に均質な多孔質材及びその製造方法を提供する。また、本発明は、カーボンナノファイバーが均一に分散された複合金属材料およびその製造方法を提供する。
【解決手段】 本発明にかかる多孔質材の製造方法は、エラストマーに、充填材と、カーボンナノファイバーと、を混合し、かつ剪断力によって分散させて複合エラストマーを得る工程(a)と、複合エラストマーを熱処理し、該複合エラストマー中に含まれるエラストマーを分解気化させて中間複合材料250を得る工程(b)と、中間複合材料250を圧縮して多孔質材を得る工程(c)と、を含む。 (もっと読む)


21 - 30 / 41