説明

国際特許分類[C22C49/14]の内容

化学;冶金 (1,075,549) | 冶金;鉄または非鉄合金;合金の処理または非鉄金属の処理 (53,456) | 合金 (38,126) | 金属または非金属の繊維またはフィラメントを含む合金 (268) | 繊維またはフィラメントに特徴のあるもの (129)

国際特許分類[C22C49/14]に分類される特許

31 - 40 / 129


【課題】カーボンナノファイバーが均一に分散された、炭素繊維複合非金属材料の製造方法を提供することにある。
【解決手段】炭素繊維複合非金属材料は、熱硬化性樹脂30と、熱硬化性樹脂30に分散されたカーボンナノファイバー40と、熱硬化性樹脂30にカーボンナノファイバー40の分散を促進させる分散用粒子50と、を含む炭素繊維複合材料の熱硬化性樹脂30を非金属のマトリクス材料と置換してなる。 (もっと読む)


【課題】マグネシウムに炭素物質を良好に分散させたMg系複合材料、及びその製造方法の提供を課題とする。
【解決手段】MgまたはMg合金原料と、炭素系原料とを混合体とし、これを加熱してMg系複合材料とする工程において、該炭素系原料として、少なくとも表面に酸素含有化合物を有する炭素系原料を用いることを特徴とするMg系複合材料の製造方法により、上記課題が解決される。前記炭素が炭素繊維またはカーボンナノチューブであることが好ましい。 (もっと読む)


【課題】カーボンナノ材料が飛散する心配が無く、酸化物が介在する心配が無い複合材料の製造技術を提供することを課題とする。
【解決手段】図(a)に示すように、上部が開いている耐熱容器28の底にカーボンナノ材料13を入れる。次に、図(b)に示すように、カーボンナノ材料13の上に、固相のマトリックス金属材料29を載せる。図(c)に示すように、耐熱容器28に蓋30を被せて密閉し、加熱を開始する。すると、マトリックス金属材料29が軟化し、流れて耐熱容器28の内壁に到達する。
【効果】カーボンナノ材料13は、マトリックス金属材料29で密閉されたことになる。耐熱容器28内には微量の酸素が残存しているが、マトリックス金属材料29で密閉された後には、残存酸素がカーボンナノ材料13又はSi被覆カーボンナノ材料25に到達する心配はなく、酸化等の心配が少なくなる。 (もっと読む)


【課題】長さ方向に渡って均一で、安定した導電性、機械的強度を備えた導電性複合金属材料を提供する。
【解決手段】本発明の導電性複合金属材料は、銅またはアルミニウムからなるマトリックス1と、前記マトリックス1よりも高強度の金属材で形成され、長さ方向に連続し、マトリックス1と相互に拡散することなく埋入された複数のフィラメント2を備える。そして、線材横断面におけるマトリックス1と全フィラメントの面積割合は1:0.01〜1:0.5とされる。 (もっと読む)


【課題】耐熱Mg合金並みの強度、特に耐熱強度を有しながら、安全管理コストが不要であり、製造コストを下げることができるマグネシウム合金を提供することを課題とする。
【解決手段】マグネシウム合金に、カーボンナノ材料を含有してなるカーボンナノ複合マグネシウム合金であって、カーボンナノ材料の含有割合が、9〜30質量%であり、温度が200℃で荷重が50MPaの条件で求める最小クリープ速度が1×10−5/s以下であることを特徴とする。
【効果】最小クリープ速度が1×10−5/s以下であるから、Srを含む耐熱Mgと同等の耐熱強度を有する。加えて、マグネシウム合金に、カーボンナノ材料を含有してなるカーボンナノ複合マグネシウム合金であるため、放射線成分などを含まず、安全管理が不要であり、製造コストの低減が可能となる。 (もっと読む)


【課題】繊維材料により補強された軽金属材料を提供する。
【解決手段】SiO成分が50重量%未満である含珪素繊維を補強材とし、この含珪素繊維を軽金属に混合し、または軽金属の表面に密着して軽金属を補強して本発明の軽金属材料とした。含珪素繊維としては、例えば玄武岩を主成分とする玄武岩繊維が使用できる。玄武岩繊維は、長さが300μmから10mmである短繊維が3重量%から70重量%含まれるもの、または織布が好適に使用できる。また、玄武岩繊維の平均径が1から50μmであるのが好適である。 (もっと読む)


【課題】半溶融状態での撹拌を維持しながら、カーボンナノ材料に好適なカーボンナノ複合マグネシウム合金素材の製造方法することを提供することを課題とする。
【解決手段】マグネシウム合金を加熱して半溶融状態にする半溶融工程と、半溶融状態のマグネシウム合金へカーボンナノ材料を投入し撹拌する第1撹拌工程と、カーボンナノ材料の投入が終わった半溶融物を、半溶融温度領域で且つ前記第1撹拌工程での温度より高い温度で撹拌することでカーボンナノ複合マグネシウム合金素材を得る第2撹拌工程と、からなる。 (もっと読む)


【課題】放熱部材の形成材料に適した熱特性を有するマグネシウム基複合材料が得られるマグネシウム基複合材料の製造方法を提供する。
【解決手段】この製造方法は、マトリクス金属を純マグネシウム又はマグネシウム合金とし、分散材をSiC粒子とするマグネシウム基複合材料を製造するにあたり、分散材原料とマグネシウム合金などの溶湯とを不活性雰囲気下で接触させ、複合する。複合を不活性雰囲気下で行うことで、マグネシウム合金などが雰囲気ガスと反応することを防止する。特に、上記分散材原料と上記溶湯とを上記雰囲気の圧力を0.1×10-5MPa以上大気圧未満として接触させると共に、不活性雰囲気の圧力を大気圧とした状態で複合させた複合物を冷却する。得られた複合材料は、気孔率が小さく、熱特性に優れる。 (もっと読む)


【課題】放熱部材の形成材料に適した熱特性を有するマグネシウム基複合材料が得られるマグネシウム基複合材料の製造方法を提供する。
【解決手段】この製造方法は、マトリクス金属を純マグネシウム又はマグネシウム合金とし、分散材をSiC粒子とするマグネシウム基複合材料を製造するにあたり、分散材原料とマグネシウム合金などの溶湯とを不活性雰囲気下で接触させ、複合する。分散材原料に平均粒径が異なるSiC粒子の粉末を複数用意し、これらを混合した混合粉末を用いる。複合を不活性雰囲気下で行うことで、マグネシウム合金などが雰囲気ガスと反応することを防止する。平均粒径が異なる複数の粉末を利用することで、SiC粒子が高割合な複合材料を製造することができる。 (もっと読む)


【課題】気孔率が小さく、放熱部材に適した熱特性を有するマグネシウム基複合材料、及びその製造方法を提供する。
【解決手段】このマグネシウム基複合材料は、マグネシウム又はマグネシウム合金からなる母材にSiCが分散したものであり、この複合材料中の気孔率が3%未満である。この複合材料は、原料のSiCを加熱して、その表面に酸化膜を形成する酸化処理工程と、酸化膜が形成された被覆SiCを成形型に配置して、この被覆SiCの集合体に、675℃以上1000℃以下の温度で溶融マグネシウム又は溶融マグネシウム合金を含浸させる含浸工程とを具える製造方法により製造することができる。上記酸化処理において酸化膜は、加熱温度を700℃以上とし、原料のSiCに対する質量割合が0.4%以上1.5%以下を満たすように形成する。 (もっと読む)


31 - 40 / 129