説明

国際特許分類[C23C2/02]の内容

国際特許分類[C23C2/02]に分類される特許

101 - 110 / 264


【課題】本発明は自動車の車体及び構造材等に用いられる高延性及び高強度特性を有する高マンガン溶融亜鉛メッキ鋼板の製造方法に関し、高マンガン鋼をメッキ素材として使用し、溶融メッキ性及びメッキ密着性等のメッキ表面品質に優れた高マンガン鋼の溶融亜鉛メッキ鋼板を容易に製造する方法を提供する。
【解決手段】本発明は高マンガン鋼を素地として高マンガン鋼溶融亜鉛メッキ鋼板を製造する方法であって、雰囲気ガスの露点、加熱温度及び加熱時間の調整により素地の直下に内部酸化物及び多孔性の表面酸化物が形成されるべく高マンガン鋼を選択酸化させてから、還元雰囲気において還元処理した後、溶融亜鉛メッキすることを特徴とするメッキ表面品質に優れた高マンガン鋼溶融亜鉛メッキ鋼板の製造方法である。
本発明によれば、溶融メッキ性及びメッキ密着性等のメッキ表面品質に優れた高マンガン鋼の溶融亜鉛メッキ鋼板を容易に製造することができる。 (もっと読む)


1以上のセクションを含め、前記1以上のセクションに非還元性雰囲気または弱還元性雰囲気のガスが充填された焼鈍装置及び前記焼鈍装置が含まれるメッキ鋼板の製造装置及びこの装置を介してメッキ鋼板を製造する方法が提供される。
追加的な酸化―還元熱処理工程や高価の合金元素を多量に含まなくても既存の焼鈍設備及び熱処理サイクルを用いて溶融メッキ鋼板に対するメッキ性、合金化性、耐ピックアップ性、メッキ密着性、耐剥離性(Anti−flaking)、耐クレーター(Anti−crater)、耐アッシュ性(Anti−ash)などのメッキ品質を大幅向上させることができる。また、優秀な品質を経済的で容易に確保することができて、その用度が多様で費用節減の側面から効果的である。
(もっと読む)


【課題】鋼中にMnが1.0質量%以上含有されていても、めっき性の良好な合金化溶融亜鉛めっき鋼板を得ることが可能な製造方法を提供する。
【解決手段】Mnを1.0〜3.0質量%含有する鋼板の表面に、Crを、電気めっき法、蒸着法、イオンプレーティング法などの方法によって、5〜1000mg/m付着させた後、焼鈍処理、溶融亜鉛めっき浴への浸漬処理、合金化処理を行うことを特徴とする、めっき性の良好な合金化溶融亜鉛めっき鋼板の製造方法。 (もっと読む)


【課題】引張強さが1500MPa以上の高強度鋼板およびその製造方法を提供する。
【解決手段】成分組成として、Si+Mn:1.0%以上を含有する。主相組織は、フェライトと炭化物が層をなしており、さらに、炭化物のアスペクト比が10以上で、かつ、前記層の間隔が50nm以下である層状組織が組織全体に対する体積率で65%以上である。さらに、フェライトと層をなす炭化物のうちアスペクト比が10以上かつ圧延方向に対して25°以内の角度を有している炭化物の分率が面積率で75%以上とすることで、圧延方向の曲げ性および耐遅れ破壊特性が優れることになる。上記鋼板は、パーライト組織を主相とし、残部組織におけるフェライト相が組織全体に対する体積率で20%以下であり、パーライト組織のラメラ間隔が500nm以下である組織を有し、ビッカース硬さがHV200以上の鋼板に対して、圧延率:60%以上(好適には75%以上)で冷間圧延を施すことで得られる。 (もっと読む)


【課題】均一な外観とプレス加工後の形状均一性を得ることのできる冷延鋼板およびその製造方法を提供する。
【解決手段】Ti添加IF鋼板である。そして、鋼板両面における各表面から10μmまでの板厚表層部において、大きさ20nm未満の析出物に含まれるTi元素の該板厚表層部中での含有量(mass%)を、鋼板中の全Ti含有量(mass%)の9%以下とする。製造するに際しては、加熱温度が1000℃以上1200℃未満で、かつ1000℃以上の温度域での加熱時間が3.0時間以下の条件でスラブ加熱を行うこと、鋼板表面温度が(Ar3変態点−300℃)以上Ar3変態点以下の範囲となるよう冷却した後、仕上げ圧延終了時の鋼板表面温度がAr3変態点以上の温度となるように仕上げ圧延し、ただちに冷却し、650℃以上の温度で巻取ることが特徴である。 (もっと読む)


【課題】外観性状が良好で、かつ厚目付けのめっき物を形成する
【解決手段】金属材料を、溶融塩フラックス浴中に浸漬した後、溶融金属めっき浴に浸漬して、金属材料に溶融金属をめっきする金属めっき材料の製造方法であって、溶融金属めっき浴の化学組成が、質量%で、Al:45〜60%およびSi:2.0%を超え5.0%以下を含有し、残部がZnおよび不純物からなる金属めっき材料の製造方法。 (もっと読む)


【課題】プレNi法による合金化溶融亜鉛めっき鋼板の製造に際し、通常の冷延−焼鈍プロセスで製造したDP鋼の冷延鋼板と同等の低降伏比を有する合金化溶融亜鉛めっき鋼板の製法を提供する。
【解決手段】質量%でC:0.05〜0.20%、Mn:1.5〜3.0%、Si:0.5〜1.8%、P≦0.05%、S≦0.03%、sol.Al:0.005〜1.0%、N≦0.01%を含み、残部は実質Feからなる鋼片を熱延、酸洗、冷延後、焼鈍し、冷却したあと、伸び率0.1%以上での調質圧延を実施し、Ni又はNi−Fe合金をプレめっきし、Alを0.12〜0.20%含む溶融亜鉛浴に浸漬してめっきし、ガスワイピング後に合金化処理を行い、その後調質圧延をかけ形状矯正する合金化溶融亜鉛めっき鋼板の製造方法であって、上記冷延、焼鈍後、プレめっき前の調質圧延と上記合金化処理後の調質圧延の伸び率の合計が1.2%以下であることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。 (もっと読む)


【課題】高加工時の耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法を提供する
【解決手段】質量%で、C:0.01〜0.15%、Si:0.001〜2.0%、Mn:0.1〜3.0%、Al:0.001〜1.0%、P:0.005〜0.060%、S≦0.01%を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する。そして、亜鉛めっき層の直下の、下地鋼板表面から100μm以内の鋼板表層部には、Fe、Si、Mn、Al、Pのうちから選ばれる1種以上の酸化物が合計で片面あたり0.01〜0.5g/m2存在する。さらに、前記亜鉛めっき層直下の、下地鋼板表面から10μmまでの領域においては、粒界から1μm以内の地鉄粒内に結晶性Si、Mn系複合酸化物が存在する。 (もっと読む)


【課題】Siを比較的多量に含有する鋼板を基材して溶融亜鉛めっきや合金化溶融亜鉛めっきが施される溶融亜鉛系めっき鋼板を、めっきの濡れ性を改善しながら低コストで製造する。
【解決手段】熱間圧延工程での鋼帯の巻取温度を660〜750℃とし、化学成分をC:0.07〜0.15%、Si:0.9〜1.7%、Mn:1.0〜2.0%、Al:0.1〜0.2%、P:0.002〜0.010%、S:0.0010%以下、N:0.010%以下、残部Feおよび不純物からなる冷間圧延後の鋼板を、連続溶融亜鉛めっき工程では、酸化の際に、HとCHを合計で50体積%以上含む燃料ガスを空燃比:1.05〜1.3で燃焼させた雰囲気で鋼板温度が550℃以上となるように鋼板を加熱するとともに、還元焼鈍時に、露点が−50〜−10℃の水素1〜20体積%−窒素雰囲気中で加熱する。 (もっと読む)


【課題】鋼板表面に酸化鉄を形成させる工程を経ることなく、めっき性に優れた高強度溶融亜鉛系めっき鋼板を得る。
【解決手段】C:0.01〜2.0質量%、Mn:0.2〜3.0質量%、Cr:0.10〜1.0質量%、Al:0.01〜5.0質量%、P:0.2質量%以下、S:0.02質量%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼板表面に、浴中Al濃度が0.001質量%以上である溶融亜鉛系めっき浴で溶融めっきして形成しためっき層(溶融めっき後合金化処理したものを含む。)を有する高強度溶融亜鉛系めっき鋼板であって、めっき層のめっき−下地鋼板界面から1μmまでの領域、及び、下地鋼板のめっき−下地鋼板界面から1μmまでの領域の一方または両方の領域においてAl、MnおよびCrの各濃度が、各々下地鋼板中のAl、MnおよびCrの各濃度の3倍以上である部分が存在する。 (もっと読む)


101 - 110 / 264