説明

国際特許分類[G05D23/19]の内容

物理学 (1,541,580) | 制御;調整 (21,505) | 非電気的変量の制御または調整系 (4,282) | 温度の制御 (352) | 電気的手段の使用によって特徴づけられたもの (247)

国際特許分類[G05D23/19]の下位に属する分類

国際特許分類[G05D23/19]に分類される特許

1 - 10 / 196



Notice: Undefined index: from_cache in /mnt/www/gzt_ipc_list.php on line 285

【課題】複数の蓄熱タンクおよび循環ポンプを備えた温調ユニットの並設と、タンク内の液体を循環させる循環路を形成した、より安定した温度制御が可能な温度制御システムを提供する。
【解決手段】第1温度の液体を貯蔵する低温温調ユニット74、第1温度より高い第2温度の液体を貯蔵する高温温調ユニット75、低温温調ユニットからの流体を流す低温流路76、高温温調ユニットからの流体を流す高温流路77、流体を循環させるバイパス流路73、合流部PAにて低温流路、高温流路及びバイパス流路の3流路から合流した流体を流す結合流路71、結合流路から流体を流し、半導体製造装置100に用いられる部材を冷却又は加熱する調温部70、合流部の上流側にて前記3流路に取り付けられた可変バルブ79の弁開度を制御し、前記3流路の流量分配比率を調整する制御装置90を有する温度制御システム1が提供される。 (もっと読む)


【課題】ステップ応答制御においてエネルギー使用量が一定値を大幅に超えないように、かつ設定値への追従特性が損なわれないようにする。
【解決手段】電力総和抑制制御装置は、各制御ループの操作量を特定の値にした場合の昇温時間を推定する昇温時間推定部(12)と、各制御ループの制御量を昇温時間の間に設定値変更に応じた量だけ変化させるのに必要な出力を推定し、この必要出力から各制御アクチュエータの使用電力の総和である使用電力総量を算出し、割当総電力に対する使用電力総量の達成率と最大限度時間に対する昇温時間の確保率とのバランスを表す重み付け評価関数の評価値を最適にする必要出力の組み合わせを探索して、最終的に得られた必要出力を各制御ループの操作量出力上限値として設定する電力抑制部(16〜19)と、制御ループ毎に設けられた制御部(22−i)とを備える。 (もっと読む)


【課題】主動力源のエンジン冷却回路に使用される冷却液を熱源として、新たな熱源を必要とせずに低温時の暖め機能を付加させてなる、車両及び建設機械に搭載される電気機器或いは電子部品装置の温度制御装置及び温度制御方法を得る。
【解決手段】エンジンを搭載した車両及び建設機械に搭載される電気機器或いは電子部品装置を適正な温度範囲に制御するために、前記電気機器或いは電子部品装置が第一の温度より低温の場合はエンジン冷却液の余熱を利用して前記電気機器或いは電子部品装置を暖め、前記電気機器或いは電子部品装置が第二の温度より高温の場合は、前記電気機器或いは電子部品装置を第一の温度と第二の温度の範囲に制御するために専用の冷却装置により冷却した冷却液で前記電気機器或いは電子部品装置を冷却するために、温度センサの検出した温度に応じて切換弁を切り替えることで、いかなる環境温度下においても適正な温度範囲に制御する。 (もっと読む)


【課題】従来よりも実用性と一般性に優れたB2B制御システムを提供する。
【解決手段】制御装置は、バッチ反応プロセスを制御するPIDコントローラを実現するカスケード制御実行部6と、反応プロセスモデルを記憶するモデル記憶部1と、モデル調整部7と、反応プロセスモデルを線形近似した伝達関数モデルを用いてPIDコントローラのPIDパラメータを調整する制御パラメータ調整部5とを備える。モデル調整部7は、冷媒入口温度Tciの実績データを平滑化して反応プロセスモデルの入力として与え、反応プロセスモデルの出力である反応温度Travの時系列データと反応温度Trの実績データとの2乗誤差を算出し、2乗誤差が最小になる、反応プロセスモデルの適応パラメータを非線形最適化により求め、適応パラメータを用いて反応プロセスモデルのモデルパラメータを調整する。 (もっと読む)


【課題】ステップ応答制御においてエネルギー使用量が一定値を大幅に超えないように、かつ設定値への追従特性が損なわれないようにする。
【解決手段】電力総和抑制制御装置は、各制御ループの操作量を特定の値にした場合の昇温時間を推定する昇温時間推定部(12)と、各制御ループの制御量を昇温時間の間に設定値変更に応じた量だけ変化させるのに必要な出力を推定し、使用電力総量が割当総電力を超えない必要出力を各制御ループの操作量出力上限値とする電力抑制部(16〜18)と、昇温時間が最大限度時間以内でない場合に、各制御ループの必要出力を、各制御ループの制御量を最大限度時間の間に設定値変更に応じた量だけ変化させるのに必要な操作量として計算し直し、この必要出力を各制御ループの操作量出力上限値として再設定する補正設定部(21)と、制御部(23−i)とを備える。 (もっと読む)


【課題】光学素子の中心部分の温度を精度よく制御できる温度制御装置を提供する。
【解決手段】第1の主面及び第1の主面と対向する第2の主面を有する光学素子の温度制御装置であって、第1の主面に一定の接触熱抵抗で接する第1の筐体と、第1の筐体と第1の主面とが接する面積と等しい面積で、第2の主面に一定の接触熱抵抗で接する第2の筐体と、第1の筐体の温度を調整する温度調整素子と、第1の筐体の温度を測定する第1の温度測定素子と、第2の筐体の温度を測定する第2の温度測定素子と、第1の温度測定素子により測定された第1の筐体の測定温度と第2の温度測定素子により測定された第2の筐体の測定温度との平均値を光学素子の温度として、平均値が予め設定された設定値であるように温度調整素子を制御して第1の筐体の温度を調整させる制御装置とを備える。 (もっと読む)


【課題】温度制御用の温度検出素子が故障しても、被加熱物の温度をほとんど変動させることなく、継続して温度制御可能な温度制御方法を提供する。
【解決手段】各々が互いに異なる位置に設けられた複数の温度検出素子Ai1〜Ai10が温度を検出した検出値に基づいて、各々が互いに異なる位置に設けられた複数の発熱素子63−1〜63−10を含み、被加熱物を加熱する加熱部63における発熱素子63−1〜63−10の発熱量を制御することによって、被加熱物の温度を制御する温度制御方法において、複数の温度検出素子Ai1〜Ai10のいずれかが故障したときに、故障した温度検出素子以外の温度検出素子が検出した検出値に基づいて、複数の温度検出素子Ai1〜Ai10の各々の温度を推定する第1の推定アルゴリズムにより、複数の温度検出素子Ai1〜Ai10の各々の温度を推定し、推定した推定値に基づいて、被加熱物の温度を制御する。 (もっと読む)


【課題】電池パックの温度を制御する温度制御装置において、電池パックの温度を制限時間以内に設定温度にする。
【解決手段】温度計測部6により電池パック5の温度を計測して制御部2に出力する。制御部2は、温度計測部6から入力された電池パック5の温度と、予め設定された設定温度との温度差を算出する。また、制御部2は、算出した温度差と電池パック5の熱容量とを乗算することにより、電池パック5を設定温度にするのに必要な熱量を算出する。さらに、制御部2は、電池パック5に必要な熱量を予め設定されている制限時間で除算し、熱電素子4に要求される単位時間あたりの発熱量を算出する。そして、熱電素子4の電流熱量特性を参照して、算出された単位時間あたりの発熱量に対応する電流値の電流を熱電素子4へ供給する。 (もっと読む)


【課題】冷却手段又は加熱手段に大きな冷却能力又は加熱能力を必要とせず、被制御装置の温度を変更するときに高速かつ高精度に温度制御することができる温度制御装置を提供する。
【解決手段】被制御装置12と、第1及び第2の供給部30、40を含む供給装置20との間に設けられ、流体の温度を制御する温度制御装置50であって、流体を貯蔵する貯蔵部51と、被制御装置12を第1及び第2の供給部30、40の一方と接続するとともに貯蔵部51を第1及び第2の供給部30、40の他方と接続するか、又は、被制御装置12と貯蔵部51と接続するように、接続を切り替える接続切替部55とを有する。 (もっと読む)


1 - 10 / 196