説明

ねじり振動測定装置及びその方法

【課題】この発明は、簡易な構成で、且つ、簡便にして容易に微小なねじり振動の高精度な測定を実現し得るようにすることにある。
【解決手段】回転軸10に歯車13を配して、この歯車13に対設して検出器14を配し、検出器14で回転軸10の回転駆動に連動して歯車13の凹凸を検出し、ねじり振動の加振されていない状態における回転軸10の1回転分の連続した基準検出信号を取得して、その基準検出信号波形の周期と、ねじり振動の加振された状態における回転軸10の1回転分の連続した検出信号波形の同一順番の周期を比較して時刻毎にねじり角変位を求めるように構成した。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、例えば大型火力タービン、発電機ユニット等の回転軸のねじり角変位変動を測定するのに用いられるねじり振動測定装置及びその方法に関する。
【背景技術】
【0002】
一般に、この種のねじり振動測定装置としては、非接触型のセンサを用いて回転軸等の回転体のねじり振動を測定するものが各種提案されている(例えば、特許文献1及び2参照)。
【0003】
ところで、このようなねじり振動測定装置は、回転軸のねじり振動変位を測定する場合、被検出部として、例えば鋼材等の磁性体で形成した歯車を回転軸に嵌着して配し、この歯車の歯先に対して周知の電磁ピックアップ等の検出器が対向配置される。この検出器は、回転軸が回転駆動されると、その回転に伴い歯車の歯先が順に対向されて、その凹凸に伴う距離の差に応じた誘導電流を発生し、電流の増減を繰り返す電気信号を検出信号波形として出力する。
この検出信号波形は、例えば図17に示すように回転軸の回転速度と歯車の凹凸の間隔に基づく周期(Ti)をもち、その凹凸のわずかな形状の差異に応じた周期差を持つ。この周期(Ti)は、連続して順に算出される。
【0004】
例えば1回転分等の一定個数周期(Ti)を加重平均して基準周期(T)として求める。ねじり振動は、発生すると、ねじりの周期が含まれて周期(Ti)と違った周期(ti)が計測される。
【0005】
その他、測定したい状態における検出信号波形の周期(ti)と基準周期(T)と、例えば別の検出器で検出した回転軸の1回転の周期(TN)として、ねじり角変位変動(Δθi)、すなわちねじり振動を求める回転角変位変動が
ねじり角変位(Δθi)=(検出信号波形の周期(ti)−基準周期(T))/1回転の周期(TN)×360°
の式に基づいて算出される。
【0006】
また、基準パルス発生器を備えて、図18に示すように検出信号波形の周期(ti)の平均から基準周期(T)を算出するのでなく、歯車の歯数に対応する一定周期(Tp)の基準周期信号を発生させ、これを基準周期として、この基準周期(Tp)と検出信号波形の周期(ti)とに基づいて回転角変位変動(Δθi)を算出する方法がある。
即ち、いずれも検出信号波形の基準周期(T)、あるいは一定周期(Tp)と、検出信号波形の周期(ti)とに基づいてねじり角変位変動が算出されている。
【特許文献1】特開平6−3078922号公報
【特許文献2】特開2005−106638号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、上記ねじり振動測定装置では、回転軸のねじり角変位変動が微小で、歯車の歯の間隔のバラツキ量に比較して小さい場合、そのバラツキ量を加重平均により求めた基準周期と、歯車の歯の設置間隔に応じた検出信号波形の周期とからねじり角変動変位量を算出しているために、歯の間隔のバラツキが、ねじり角変位変動として測定してしまい、正確な測定が困難となる。
【0008】
例えば大型の火力タービン・発電機ユニットにおいては、発電運用中、負荷の急激な増加、減少あるいは送電系統の故障等による負荷の急激な変化により、発電機に作用するトルクが急激に作用変化して、タービンを含むタービン・発電機軸系全体にねじり固有振動が励振されることがある。また、このような大型の火力タービン・発電機ユニットには、その軸系の質量とねじり剛性の分布に基づく、最も低い次数のねじり固有振動を、数Hzから十数Hz程度と、回転速度より低い周波数のねじり固有振動数を持つものがあり、負荷の急激な変化により、その各固有振動が励振され、軸系が持つ減衰特性に応じて振動することがある。
ところが、この回転軸を含む軸系の長さは、30m、40m以上もあり、その先端と後端との間で、ねじり角度が数度に及ぶ場合がある。このねじり変位変動を妨げようとする減衰は、回転軸を構成する材料の持つ減衰程度であり、その振動の減衰速度が比較的遅く、長い時間振動を続けてしまう場合、回転軸に繰り返し疲労が発生する虞を有する。
そこで、上記大型の火力タービン・発電機ユニットにおいては、その回転軸系に対して上記ねじり振動測定装置を組付け配置して、その検出信号波形の周期を算出することにより、回転軸の回転速度と共に、ねじり振動を測定する方法が採られている。
【0009】
ここで、測定の対象となるねじり振動は、ねじり角変位、すなわちねじり振動振幅が大きく、その製作精度に影響を受けることがないうえ、その振動数が回転軸の回転速度に比して遅いことで、計測誤差の無い正確な測定が可能である。このため、ねじり振動測定装置は、軸系の回転軸の回転速度を、制御あるいは監視するために用いられる被検出対象である歯車と検出器が流用されている。
【0010】
また、その振動数が回転軸の回転速度より遅いため、1回転に要する時間の変化を連続して測定することで、ねじり振動測定ができるため、回転軸に設ける検出対象物として、周方向に凹凸を有する複数の歯を持つ歯車を用いることなく、円周上の1点に設置して、その回転周期を測定するように構成することにより、検出対象物の設置精度に影響を受けることなく、正確に測定することが可能である。
【0011】
ところが、上記大型の火力タービン・発電機ユニットでは、その発電運用中において、送電系統の端末に接続された電動機等の負荷の状態に応じて逆相電流が発生するために、この逆相電流によって、送電系統の2倍の周波数の変動トルクが発電機の回転子に作用する。この回転子、すなわち回転軸は、原動機であるタービン軸と連結され、原動機を介して回転駆動される。そして、タービン軸は、流体が持つ熱エネルギを回転運動エネルギに変換する翼を備えており、発電機軸、タービン軸、翼及びこれらを連結する締結部品で回転軸系が構成されている。
【0012】
上記逆相電流は、発電機の回転軸に対して送電系統の2倍の周波数の変動トルク、すなわちねじり加振として作用し、上記回転軸系が励振されて、軸系のねじり固有振動数と一致すると、共振して繰り返し疲労を発生させる。そのため、発電する電気の周波数の2倍、すなわち100Hzあるいは120Hz等に基づく周波数範囲内に軸系の固有振動数を持たないように軸系を製作することが、信頼性を確保するうえで重要であり、その実際の測定検証が必要となる。
【0013】
しかし、上記回転速度と同じ振動数のねじり振動を測定するためには、回転軸表面2つ以上の被検出対象物を設置する必要があり、被検出対象物を、例えば正確に180°間隔に設置することができれば、ねじり振動の正確な測定が可能であるが、実際のところ正確に設置することが困難なために、検出信号波形の周期にずれが生じて、正確な振動測定が困難である
また、対象となるねじり固有振動数が100Hz、あるいは120Hz付近の場合には、回転速度の2倍以上の振動数であるため、回転軸の表面の円周上に設置する検出対象物が回転軸の表面に4つ以上設置する必要がある。この場合には、さらに設置作業が困難となり、正確な振動測定が困難となる。
【0014】
一方、発電機の回転軸に作用する逆相電流の量は、できるだけ小さくなるように送電系統が製作され、また送電系統の端末に接続されている負荷の運用状態により刻々と変化するが、多くの場合、微小な量である。従って、軸系が発電機に作用する逆相電流により加振されても、著しく共振しない限り、軸系に生じるねじり振動振幅、すなわち、ねじり角変位変動が微小量であるために、軸系のねじり固有振動数を正確に測定することが困難である。
【0015】
そこで、大型の火力タービン・発電機ユニットを送電系統から切断した状態で、発電機の発電端を1線地絡して励振し、無効電力を生じさせて運転することにより、一定量の逆相電流を発電機に発生させ、軸系をねじり加振させて、ねじり固有振動を励振させ、実際のねじり固有振動を確認する確認試験がある。
逆相電流を多く発生させ、強い加振を行うことにより、上記ねじり振動測定装置を用いて測定可能であるが、大きなねじり振動が生じると、軸系が繰り返し疲労を起こすことで、繰り返し疲労するまでの強い加振を加えることができないため、正確な測定を行うことが困難である。
【0016】
そこで、送電系統の2倍付近の周波数の微小なねじり振動は、ねじり振動している回転軸の表面に生じる0.0001%程度の僅かな歪み変動量を計測することにより、測定する方法が採られている。
ところが、上記測定方法では、回転軸の表面に複数の歪みゲージで構成されるホイートストンブリッジを設置して、このホイートストンブリッジに対して電圧を印加する電源を接続配置すると共に、検出した歪み変動信号を伝送する伝送装置を配さなければならないために、装置が複雑で、非常に大掛かりとなるうえ、その火力タービン・発電機ユニットへの組付け作業が非常に面倒であるという不都合を有する。
【0017】
この発明は、上記の事情に鑑みてなされたもので、簡易な構成で、且つ、簡便にして容易に微小なねじり振動の高精度な測定を実現し得るようにしたねじり振動測定装置及びその方法を提供することを目的とする。
【課題を解決するための手段】
【0018】
この発明は、回転軸の軸回りに配置され、一体に回転される被検出部と、この被検出部に対設して配置され、前記回転軸に連動して一体に回転される前記被検出部を検出して検出信号を出力する検出手段と、前記回転軸に対してねじり振動が加振されていない状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形の周期と、前記回転軸にねじり振動が加振された状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形の周期を比較してねじり角変位変動量を算出する演算手段とを備えてねじり振動測定装置を構成した。
【0019】
上記構成によれば、ねじり振動の加振されていない状態における回転軸1回転分の連続した検出信号波形の周期と、ねじり振動の加振された状態における回転軸1回転分の連続した検出信号波形の同一順番の周期を順に比較してねじり角変位を求めていることにより、時刻に対するねじり角変位変動量を算出することができる。従って、被検出部の配置精度に制約を受けることなく、正確なねじり角変位変動の測定が可能となり、ねじり振動の振幅、周波数等の高精度な振動特性を求めることできる。
【0020】
また、この発明は、回転軸の軸回りに配置され、一体に回転される被検出部と、この被検出部に対設して配置され、前記回転軸に連動して一体に回転される前記被検出部を検出して検出信号を出力する検出手段と、前記回転軸に対してねじり振動が加振されていない状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形と、前記回転軸にねじり振動が加振された状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形を比較してねじり角変位変動量を算出する演算手段とを備えてねじり振動測定装置を構成した。
【0021】
上記構成によれば、ねじり振動の加振されていない状態における回転軸1回転分の連続した検出信号波形と、ねじり振動の加振された状態における回転軸1回転分の連続した検出信号波形を順に比較してねじり角変位を求めていることにより、時刻に対するねじり角変位変動量を算出することができる。従って、被検出部の配置精度に制約を受けることなく、正確なねじり角変位変動の測定が可能となり、ねじり振動の振幅、周波数等の高精度な振動特性を求めることできる。
【発明の効果】
【0022】
以上述べたように、この発明によれば、簡易な構成で、且つ、簡便にして容易に微小なねじり振動の高精度な測定を実現し得るようにしたねじり振動測定装置及びその方法を提供することができる。
【発明を実施するための最良の形態】
【0023】
以下、この発明の実施の形態に係るねじり振動測定装置及びその方法について、図面を参照して詳細に説明する。
【0024】
図1は、この発明の一実施の形態に係るねじり振動測定装置を示すもので、大型の火力タービン・発電機ユニット等の回転子である回転軸10は、支持架台11上に軸受部12を介して回転自在に設置される。そして、この回転軸の一端には、被検出部を構成する歯車13が嵌着される。この歯車13には、その歯先に対して検出手段を構成する、例えば電磁ピックアップ等の検出器14が所定の隙間を有して対向配置される。この検出器14は、図2に示すように取付け治具15を用いて例えば回転軸10の支持架台11に取付けられ、演算手段を構成する演算処理部16に接続される。
演算処理部16は、例えば図3に示すように1回転周期検出部161に上記検出部14の出力端が接続される。この1回転周期検出部161は、波形周期計数部162に接続され、上記検出器14を介して入力された検出信号を例えば図4に示すように、低い電圧から高い電圧に変化する途中で一定の電圧をしきい値として、しきい値を横切る時間の間隔から回転軸1回転分の検出信号波形の周期を算出して波形周期計数部162に出力する。なお、この検出信号波形としては、電流の変化に変換された信号であってもよい。
【0025】
上記波形周期計数部162は、スイッチ163の可動接点aに接続され、検出信号波形の周期を求めてスイッチ163の可動接点aに出力する。このスイッチ163は、その固定接点bに基準波形周期記憶部164の入力端が接続され、その固定接点cにねじり角度演算部165の一方の入力端が接続される。そして、このスイッチ163は、図示しない制御部により切換え制御され、例えば、上記回転軸10にねじり振動が加振されていない状態で、その可動接点aが、固定接点bに切換え設定され、該回転軸10にねじり振動が加振された状態で、固定接点cに切換え設定される。
【0026】
上記ねじり角度演算部165には、その他方の入力端に上記基準波形周期記憶部164の出力端が接続され、その出力端には、D/A変換部166の入力端が接続される。ねじり角度演算部165は、基準波形周期記憶部164に記憶されるねじり振動の加わらない基準検出信号波形と、スイッチ163を介して入力されるねじり振動発生後の検出信号波形とに基づいてねじり角変位を測定データとして求めてD/A変換部166に出力する。D/A変換部166は、入力した測定データをデジタル/アナログ変換してアナログデータに変換する。
【0027】
また、この演算処理部16のD/A変換部166には、例えば回転軸系の寿命を評価する分析部17の第1及び第2の演算部171,172が接続される。この第1及び第2の演算部171,172の各出力端は、第1の比較処理部173の一方の入力端が接続され、上記D/A変換部166からの測定データに基づいて計測部位におけるねじり角度変位変動及びねじり角度最大値を算出して、第1の比較処理部173に出力する。この第1の比較処理部173には、その他方の入力端に第1のメモリ部174の出力端が接続され、その出力端に第3の演算部175が接続される。
【0028】
上記第1のメモリ部174には、回転軸10の軸系を構成する回転軸系全体のねじり振動応答特性として、例えばタービン軸、発電機軸、及びこれらの回転軸に付属する翼、締結ボルト・ナット等の回転軸系全体の質量、ねじり剛性、減衰特性に基づく一定量のねじり振動の加振に対するねじり振動特性である軸系各部の振動振幅及び周波数、その各部の形状に基づく各部の変動応力、回転軸系の回転速度と回転直径に基づく遠心力により生じる引張り応力や発電出力に応じた伝達トルク、回転軸形状に基づくねじり応力や回転軸の熱変形に基づく圧縮や引張り応力等の運転中に回転軸系の各部に生じる定常応力等が記憶される。
【0029】
第1の比較処理部173は、上記第1及び第2の演算部171,172からの計測部位におけるねじり角度変位変動及びねじり角度最大値データに基づいて、第1のメモリ部174に記憶される特性データの回転軸系全体のねじり振動応答特性情報の中から必要部位のねじり振動応答特性を選択して第3の演算部175に出力する。第3の演算部175は、計測部位におけるねじり角度変位変動及びねじり角度最大値データと、回転軸系の必要部位のねじり振動応答特性とに基づいて回転軸系計における必要部位のねじり振動応答を算出する。
【0030】
第3の演算部175には、第2の比較処理部176の一方の入力端が接続され、この第2の比較処理部176の他方の入力端には、第2のメモリ部177が接続される。この第2のメモリ部177には、例えば回転軸系を構成している各部材の大きさと、繰返し回数及び定常応力に対する強度である疲労強度等の部材強度特性データが各部材毎に記憶される。
【0031】
第2の比較処理部176は、寿命評価部178に接続され、第3の演算部175からの回転軸系の必要部位のねじり振動応答に基づいて第2のメモリ部177に記憶される記憶情報の中から回転軸系の必要部位の情報を選択して寿命評価部178に出力する。寿命評価部178は、第3の演算部175からの回転軸系の必要部位のねじり振動応答と、第2のメモリ部177から選択した必要部位を構成する部材の記録情報とに基づいて回転軸系の必要部位の疲れ寿命の評価が行われる。
【0032】
上記構成において、ねじり振動を測定する場合、回転軸10にねじり振動が加振されていない状態において、回転軸10の回転駆動に連動して回転する歯車13の凹凸(歯先と歯元)が検出器14で検出される。この検出器14で検出された検出信号は、1回転周期検出部161に入力され、該1回転周期検出部161で、上述したように検出信号波形が1回転分の歯車13の凹凸の間隔に応じた周期を連続して検出し、1回転分の連続した検出信号波形の周期を波形周期計数部162に出力する。波形周期計数部162は、図4に示すように回転軸10の1回転の検出信号波形の周期(Ti)(ti)を、回転パルスが立ち上がる位置を歯車13の歯の先頭として、次の回転パルスが立ち上がる位置までを一周期(TN)として算出する。
【0033】
なお、この回転パルスは、例えば上記回転軸10上の別の位置に配される図示しない回転速度検出用の被検出部と、この被検出部(図示せず)に対応して配され、回転軸10の回転に連動して回転される被検出部(図示せず)を検出する図示しない検出部により生成される。
【0034】
ここで、スイッチ163が、可動接点aが固定接点bに切換え設定され、波形周期計数部162で求めたねじり振動が加振されていない状態での1回転分の検出信号波形の周期が基準検出信号波形の周期(Ti)として基準周期記憶部164に記憶される。
【0035】
次に、例えば発電機の発電端を1線地絡して、逆相電流を発生させて回転軸10をねじり加振して、ねじり振動を励振させる。ここで、検出器14は、回転軸10の回転に連動して一体に回転する歯車13の凹凸(歯先と歯元)を検出して検出信号を1回転周期検出部161に出力する。
【0036】
1回転周期検出部161は、入力した検出信号を、例えば低い電圧から高い電圧に変化する途中で一定の電圧をしきい値として、しきい値を横切る時間の間隔から回転軸10の1回転分の検出信号波形の周期を算出して波形周期計数部162に出力する。波形周期計数部162は、回転軸10の1回転の検出信号波形の周期(ti)を、同様に上記回転パルスが立ち上がり位置を歯車13の歯の先頭として、次の回転パルスが立ち上がる位置までを周期(TN)として算出する。
【0037】
ここで、スイッチ163は、可動接点aが固定接点cに切換え設定され、波形周期計数部162で求めたねじり振動が加振されている状態での1回転分の検出信号波形の連続した周期(ti)がねじり角度演算部165に入力される。ねじり角度演算部165は、入力した検出信号波形の周期(ti)と基準周期記憶部164に記憶される基準信号波形の同一順番の周期(Ti)とを、
ねじり角変位(Δθi)=(検出信号波形の周期(ti)−基準検出信号波形の周期(Ti))/1回転の周期(TN)×360°
の演算処理を行ってねじり角変位(Δθi)を算出して、このねじり角変位(Δθi)の変位を時刻(周期)毎に求めて、ねじり角変位変動を算出する。これにより、歯車13の歯間が不均一な場合においても、正確なねじり角変位変動が測定されて、高精度なねじり振動の振幅あるいは周波数等の振動特性が算出される。
この測定データは、D/A変換部166でアナログデータに変換され、例えば上述したように分析部17で、回転軸の軸系を構成する火力タービン・発電機ユニット等の疲れ寿命の評価が行われる。
【0038】
このように、上記ねじり振動測定装置は、回転軸10に歯車13を配して、この歯車13に対設して検出器14を配し、検出器14で回転軸10の回転駆動に連動して歯車13の凹凸を検出し、ねじり振動の加振されていない状態における回転軸10の1回転分の連続した基準検出信号を取得して、その基準検出信号波形の周期と、ねじり振動の加振された状態における回転軸10の1回転分の連続した検出信号波形の同一順番の周期を比較して時刻毎にねじり角変位を求めるように構成した。
【0039】
これによれば、検出信号波形に基づいて時刻に対するねじり角変位変動量を算出することができるため、歯車10の配置精度に影響されることなく、正確なねじり角変位変動の測定が実現されることにより、簡易な構成で、高精度なねじり振動の振幅、周波数等の振動特性を求めることできる。
【0040】
なお、この発明は、上記実施の形態に限ることなく、その他、例えば図5に示すようにねじり角変位を測定するように構成してもよく、同様の効果が期待される。但し、図5においては、上記実施の形態と同一部分について、同一符号を付して、その詳細な説明を省略する。
【0041】
即ち、上記検出器14は、回転軸10の1回転分における歯車13の歯の設置間隔に基づく検出信号波形を検出して演算処理部16に出力する。ここで、演算処理部16は、入力した検出信号を記録し、その検出信号の量、例えば電圧あるいは電流の大きさと、基準時刻からの経過時間を一組として求めて、ねじり振動が加振されていない状態の検出信号を基準検出信号として記録する。
【0042】
この検出信号波形の記録は、例えば回転軸10に配される図示しない回転速度検出用被検出部と、回転速度検出用の検出部を用いて検出される回転基準パルス(時刻)を基準として、時刻の経過と共に変化していく検出信号の量、例えば電圧あるいは電流の大きさと、基準時刻からの経過時間を一組として、次に上記被検出部が検出部を通過する回転基準パルスが立ち上がるまで連続して行われる。
【0043】
上記構成により、ねじり振動を測定する場合には、先ず、ねじり振動が加振されていない状態で、回転軸10を、測定したい回転速度で回転駆動して、上記回転基準パルスに基づいて1回転分の検出信号を検出器14で検出し、これを基準検出信号波形の周期(T2i)として記憶する。
【0044】
続いて、回転軸10にねじり振動を、例えば上述した実施の形態と同様にして加振し、基準時刻に基づいて1回転分の検出信号の量と、経過時間を検出信号波形の周期(t2i)として連続して検出する。そして、この検出信号の量と、記録しておいた同じ量の基準検出信号を選択して、その回転基準パルスに基づいて経過時間を再生する。この再生作業としては、検出信号の量の他、その前の時間に検出した量から増加しているか、減少しているか、その変化量の割合、経過時間が比較しようとしている検出信号と一定範囲にあるかなどを判定条件として、基準検出信号を選択する。
【0045】
次に、選択した基準検出信号の回転基準パルスの立ち上がりからの経過時間、すなわち基準検出信号波形の周期(T2i)と検出信号波形の周期(t2i)のずれ時間を求めて、そのときの回転基準パルスの周期(TN)から算出される回転速度に基づいて、各周期におけるねじり角変位(Δθ2i)を、回転パルスの周期(TN)から求めたれる回転速度に基づき
ねじり角変位(Δθ2i)=(検出信号波形の周期(t2i)−基準検出信号波形の周期(T2i))/1回転の周期(TN)×360°
の演算処理を実施して求め、この演算処理を全ての検出信号波形について連続して行うことで、ねじり変位変動を算出する。
【0046】
この実施の形態によれば、検出信号について周期毎に連続してねじり角変位変動を算出していることにより、同様に歯車の配置精度に影響されることなく、正確なねじり振動を測定できるため、高精度なねじり振動の振幅及び周波数等の振動特性を求めることが可能となる。
【0047】
また、この発明は、上記実施の形態では、回転パルス検出専用の検出手段を設けて、回転軸10の1回転分を検出するように構成した場合について説明したが、これに限ることなく、その他、被検出部を構成する複数の被検出物として、回転軸10の軸回りの周壁に、例えば図6に示すようにその中の少なくとも一つが、他に比して異なる波形、例えば電圧、あるいは電流の大きさ、一定時間における電圧、あるいは電流が変化する等の量が可変するように配して、その異なる波形に基づいて回転軸10の1回転を検出可能に構成することも可能で、同様の効果が期待される。この実施の形態では、測定中に取得される検出信号波形の量に対して回転パルス検出用しきい値を設定して、その量に達した状態で回転軸10上の基準位置を通過したものと判定して、周期の順番あるいは周期を求める。
【0048】
さらに、この発明は、被検出部として、同様に回転パルス検出専用の検出手段を設けることなく、例えば被検出部を構成する複数の被検出物を、回転軸10の軸回りの周壁に、図7に示すようにその中の少なくとも一つが、他に比して異なる周期を検出可能に配して、その異なる波形に基づいて回転軸10の1回転を検出可能に構成することも可能で、同様の効果が期待される。この実施の形態では、測定中に取得される検出信号波形の周期に対して回転パルス検出用しきい値を設定して、その周期が算出された状態で回転軸10上の基準位置を通過したものと判定して、周期の順番を求める。
【0049】
また、この発明は、上記構成に限ることなく、その他、図8及び図9に示すように被検出部及び検出手段を構成しても、同様に有効な効果が期待される。但し、この図8及び図9においては、上記実施の形態と同一部分について、同一符号を付して、その詳細な説明を省略する。
【0050】
この実施の形態では、被検出部として、反射部材である複数の反射片20を回転軸10の周壁の軸回りに所定の間隔を有して配し、検出手段として、光照射装置21及び受光装置22を上記支持架台11に対して取付け具15を用いて回転軸10の反射片20に所定の隙間を有して対向配置する。即ち、この実施の形態では、回転駆動される回転軸10の反射片20に向けて光照射装置21から光を照射して、その反射光を受光装置22で検出し、この受光装置22で受光した光を光電変換部23で光電変換して電気信号を生成する。この電気信号を検出信号波形として、上述したように演算処理してねじり角変位が算出されて、ねじり変位変動が求められる。
【0051】
また、被検出部としては、その他、図10に示すように上記複数の反射片20を、粘着テープ201に設けて、この粘着テープ201を、上記回転軸10に貼付けて複数の反射片20を回転軸10の周壁の軸回りに配し、この粘着テープ201上の複数の反射片20からの反射光を受光して光電変換して電気信号を生成するように構成しても、同様に有効な効果が期待される。
【0052】
さらに、被検出部として、その他、図11に示すように白や金属光沢色等の反射光量の多い高反射領域241と、黒や艶消し色等の反射光量の少ない低反射領域242を、粘着テープ201上に交互にランダムに配して、この粘着テープ201を、上記回転軸10の周壁の軸回りに貼付けて、同様に高反射領域241と低反射領域242からの反射光を受光して光電変換し、電気信号を生成するように構成することも可能で、同様に有効な効果が期待される。この場合においても、これら高反射領域241及び低反射領域242を、粘着テープ201を介して配することなく、回転軸10の軸回りに直接的に配するように構成してもよい。
【0053】
また、被検出部としては、その他、図12及び図13に示すように構成してもよく、同様の効果が期待される。但し、図12及び図13においては、上記実施の形態と同一部分について、同一符号を付して、その説明を省略する。
【0054】
図12に示す実施の形態では、回転機械の起動前あるいは停止後の回転軸の熱変形を防止するために数回転毎分程度回転させのターニング装置の回転軸30に嵌着される大歯車31を被検出部として用いて構成したものである。
【0055】
この実施の形態では、大歯車31の歯面に対して所定の隙間を採って上記検出器32をハウジング33に取付けて対向配置する。この検出器32としては、例えば電磁式センサを用いて構成され、上記大歯車31の回転に連動してその歯面の凹凸表面が順に通過することで、その隙間の変化に応じた誘起電圧信号が出力されることで、この誘起電圧信号を検出信号波形として、同様にして上述したねじり角変位が算出され、ねじり角変位変動が求められる。
【0056】
なお、上記検出器32としては、その他、電磁式センサに代えて渦電流式変位センサを用いて構成しても良い。この渦電流式変位センサの場合には、大歯車31の回転に連動して隙間の変化に応じた渦電流信号が出力され、この渦電流信号を検出信号波形として、同様にして上述したねじり角変位が算出されて、ねじり角変位変動が求められる。
【0057】
また、図13の実施の形態では、例えばタービン軸と発電機軸との回転軸40の軸継ぎ手部41の連結に供する締結用ボルト・ナット42を被検出部として用いて構成したものである。
【0058】
この実施の形態の場合には、被検出部を構成する締結用ボルト・ナット42が鋼材等の導体や磁性体で形成されることで、検出器43として、電磁式センサ(あるいは渦電流式変位センサ)がハウジング44に所定の隙間を有して対向配置される。この検出器43を構成する電磁式センサ(あるいは渦電流式変位センサ)は、回転軸40の回転に連動してその締結用ボルト・ナット42が順に通過することで、その隙間の変化に応じた誘起電圧信号(あるいは渦電流信号)を出力する。そして、この誘起電圧信号(あるいは渦電流信号)が検出信号波形として、同様にして上述したねじり角変位が算出されて、ねじり角変位変動が求められる。
【0059】
さらに、被検出部として、その他、例えば上記回転軸10(30,40)の壁面を利用して、この壁面の軽微な腐食や潤滑油の付着等に伴う経年変化により生じる反射量の差に応じた検出信号波形を取得するように構成することも可能で、同様に有効な効果が期待される。
【0060】
この実施の形態では、回転軸10(30,40)の壁面に隙間を有して上記光照射装置21及び受光装置22(図8参照)を対向配置して、光照射装置21から光を照射し、回転軸10(30,40)の壁面で反射した光を受光装置22で受光して、この反射光を光電変換して電気信号を生成する。そして、この電気信号から、図14に示すように予め設定したしきい値に基づいて検出信号波形を取得し、この検出信号波形に基づいて、同様に上述したねじり角変位が算出されて、ねじり角変位変動が求められる。
【0061】
また、回転軸10(30,40)に生じた加工時の精度誤差に基づく、いわゆる微小な振れなどによる許容範囲内の軸真円ずれや、軸組立て作業や保守点検作業に伴う回転軸10(30,40)の壁面表面の傷を被検出部として、検出手段として、渦電流式変位センサを回転軸の壁面表面に対向配置して検出するように構成することも可能で、同様の効果が期待される。この渦電流式変位センサは、回転軸10(30,40)の壁面との微小な隙間の変化を検出して例えば図14に示すように予め設定したしきい値に基づいて検出信号波形を取得して、この検出信号波形に基づいて、同様に上述したねじり角変位が算出され、ねじり角変位変動が求められる。
【0062】
ここで、上記実施の形態のうち光照射装置21から回転軸10(30,40)の被検出部に光を照射して、その反射光を受光装置22で受光して、その反射光を光電変換して検出信号波形を取得する光学検出構造においては、例えば図15に示すように回転軸10(30,40)の1回転分の基準検出信号波形の周期あるいは基準検出信号波形を記録する手法として、検出信号波形あるいは周期に1回転に一箇所、大きな特徴が出るように照射光量を1回転の周期に合わせて変化させるように構成してもよい。この手法によれば、回転軸10(30,40)の1回転分の検出信号波形のくぎりが明確となるため、さらに正確なねじり角変位の算出を容易に実現することが可能となる。
【0063】
また、この発明は、上記実施の形態に限ることなく、その他、図16に示すように被検出部及び検出手段を構成しても、同様に有効な効果が期待される。但し、この図16においては、上記実施の形態と同一部分について、同一符号を付して、その詳細な説明を省略する。
【0064】
この実施の形態では、被検出部として、回転軸50を中空状に形成して、その周壁の軸回りに軸方向と直交する複数の透過窓501を、所定の間隔に形成して、検出手段として、放射状に光を投光可能な光源51を回転軸50内に収容配置して、受光装置52を上記支持架台11に対して取付け具15を用いて回転軸50の透過窓501に所定の隙間を有して対向配置するように構成する。この受光装置52には、回転軸50の回転に連動して該回転軸50の透過窓501が順に対向され、該透過窓501を通して光源51からの光が受光される。
【0065】
上記構成により、この実施の形態では、回転駆動される回転軸50内の光源51を駆動して光が発光されると、その光が回転軸50の透過窓501を通して軸外に放射される。この際、受光装置52は、回転軸50の回転に伴って順に対向される透過窓501から放射される光が受光される。この受光装置52で検出される複数の透過窓501から放射される光の周期は、回転軸50の回転速度とねじり振動の振幅と周期とに応じた周期となる。この受光装置52で受光した光は、光電変換されて電気信号に変換され、この電気信号を検出信号波形として、上述したように演算処理してねじり角変位が算出されて、ねじり変位変動が求められる。
【0066】
よって、この発明は、上記実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。
【0067】
例えば実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
【図面の簡単な説明】
【0068】
【図1】この発明の一実施の形態に係るねじり振動測定装置の構成を説明するために示した配置構成図である。
【図2】図1の歯車と検出器との配置関係を示した断面図である。
【図3】図2の演算処理部の構成例を示したブロック図である。
【図4】図3の演算処理部で算出するなじり角変位を求める手順を説明するために示した波形図である。
【図5】この発明の他の実施の形態に係るねじり角変位の算出手順を説明するために示した波形図である。
【図6】この発明の他の実施の形態に係る回転軸の1回転分の検出方法を説明するために示した波形図である。
【図7】この発明の他の実施の形態に係るねじり回転軸の1回転分の他の検出方法を説明するために示した波形図である。
【図8】この発明の他の実施の形態に係るねじり振動測定装置の要部を取出して示した断面図である。
【図9】図8の要部詳細を示した斜視図である。
【図10】この発明の他の実施の形態に係るねじり振動測定装置の被検出部を取出して示した斜視図である。
【図11】この発明の他の実施の形態に係るねじり振動測定装置の被検出部を取出して示した斜視図である。
【図12】この発明の他の実施の形態に係るねじり振動測定装置の被検出部を取出して示した斜視図である。
【図13】この発明の他の実施の形態に係るねじり振動測定装置の被検出部を取出して示した斜視図である。
【図14】この発明の他の実施の形態に係る検出信号波形から周期を求める方法を説明するために示した波形図である。
【図15】この発明の他の実施の形態に係る検出信号波形から周期を求めるその他の方法を説明するために示した波形図である。
【図16】この発明の他の実施の形態に係るねじり振動測定装置の被検出部及び検出手段を取出して示した断面図である。
【図17】従来のねじり角変位の算出手順を説明するために示した波形図である。
【図18】従来のねじり角変位の算出手順の他の例を説明するために示した波形図である。
【符号の説明】
【0069】
10…回転軸、11…支持架台、12…軸受部、13…歯車、14…検出器、15…取付け冶具、16…演算処理部、161…1回転周期検出部、162…波形周期計数部、163…スイッチ、164…基準波形周期記憶部、165…ねじり角度演算部、166…D/A変換部、17…分析部、171…第1の演算部、172…第2の演算部、173…第1の比較処理部、174…第1のメモリ部、175…第3の演算部、176…第2の比較処理部、177…第2のメモリ部、178…寿命評価部、20…反射片、201…粘着テープ、21…光照射装置、22…受光装置、23…光電変換部、241…高反射領域、242…低反射領域、30…回転軸、31…大歯車、32…検出器、33…ハウジング、40…回転軸、41…軸継ぎ手部、42…締結用ボルト・ナット、43…検出器、44…ハウジング、50…回転軸、501…透過窓、52…光源、52…受光装置。

【特許請求の範囲】
【請求項1】
回転軸の軸回りに配置され、一体に回転される被検出部と、
この被検出部に対設して配置され、前記回転軸に連動して一体に回転される前記被検出部を検出して検出信号を出力する検出手段と、
前記回転軸に対してねじり振動が加振されていない状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形の周期と、前記回転軸にねじり振動が加振された状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形の周期を比較してねじり角変位変動量を算出する演算手段と、
を具備することを特徴とするねじり振動測定装置。
【請求項2】
回転軸の軸回りに配置され、一体に回転される被検出部と、
この被検出部に対設して配置され、前記回転軸に連動して一体に回転される前記被検出部を検出して検出信号を出力する検出手段と、
前記回転軸に対してねじり振動が加振されていない状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形と、前記回転軸にねじり振動が加振された状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形を比較してねじり角変位変動量を算出する演算手段と、
を具備することを特徴とするねじり振動測定装置。
【請求項3】
前記被検出部は、複数個配置され、少なくとも一つが他と異なる検出信号波形が検出可能に設定されることを特徴とする請求項1又は2記載のねじり振動測定装置。
【請求項4】
前記被検出部は、複数個配置され、少なくとも一つが他と異なる検出信号波形の周期が検出可能に設定されることを特徴とする請求項1又は2記載のねじり振動測定装置。
【請求項5】
前記被検出部は、光が照射される複数の反射部材で構成され、前記検出手段は、前記反射部材に光を照射し、その反射光を受光して電気信号に変換し、前記回転軸の1回転分の検出信号を生成することを特徴とする請求項1乃至4のいずれか記載のねじり振動測定装置。
【請求項6】
前記反射部材は、複数の光反射部が所定間隔に配され、前記回転軸の軸回りに貼り付けられたテープ材で形成されることを特徴とする請求項5記載のねじり振動測定装置。
【請求項7】
前記光反射部は、反射量の異なる第1及び第2の光反射部で形成されることを特徴とする請求項6記載のねじり振動測定装置。
【請求項8】
前記被検出部は、前記回転軸に嵌着される歯車で構成され、前記検出手段は、前記歯車の歯先に対向配置される電磁式センサで構成されることを特徴とする請求項1又は2記載のねじり振動測定装置。
【請求項9】
前記被検出部は、前記回転軸に嵌着される歯車で構成され、前記検出手段は、前記歯車の歯先に対向配置される過電流式変位センサで構成されることを特徴とする請求項1又は2記載のねじり振動測定装置。
【請求項10】
前記被検出部は、回転軸の軸継ぎ手を形成する複数の締結用ボルト・ナットで構成されることを特徴とする請求項8又は9に記載のねじり振動測定装置。
【請求項11】
前記被検出部は、前記回転軸の周壁面で構成され、前記検出手段は、前記回転軸の周壁面に光を照射し、その反射光を受光して電気信号に変換し、該回転軸の1回転分の検出信号を生成することを特徴とする請求項1又は2記載のねじり振動測定装置。
【請求項12】
前記被検出部は、回転軸の周壁面で構成され、前記検出手段は、前記回転軸の周壁面に対向配置される過電流式変位センサで構成されることを特徴とする請求項1又は2記載のねじり振動測定装置。
【請求項13】
前記検出手段から照射される光は、回転軸の1回転を周期として照射光量が可変されることを特徴とする請求項5,6,7,11のいずれか記載のねじり振動測定装置。
【請求項14】
前記検出手段は、前記回転軸内に光源を配して、該回転軸の周壁に前記光源からの光を透過する複数の透過孔を配し、この透過窓を透過した光を受光して電気信号に変換して回転軸の1回転分の検出信号を生成することを特徴とする請求項1乃至4のいずれか記載のねじり振動測定装置。
【請求項15】
さらに、前記演算手段で算出したねじり角変位変動量に基づいて前記回転軸が構成する軸系の振動応答値を予測して寿命を予測する分析手段を備えることを特徴とする請求項1乃至14のいずれか記載のねじり振動測定装置。
【請求項16】
回転軸の軸回りに配置される被検出部を、前記回転軸の回転に連動して検出して検出信号を取得する検出工程と、
この検出工程において、前記回転軸に対してねじり振動を加振していない状態で取得した前記回転軸の1回転分の検出信号波形の周期と、前記回転軸にねじり振動を加振した状態で取得した前記回転軸の1回転分の検出信号波形の周期を比較してねじり角変位変動量を算出する演算工程と、
を具備することを特徴とするねじり振動測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2008−82879(P2008−82879A)
【公開日】平成20年4月10日(2008.4.10)
【国際特許分類】
【出願番号】特願2006−263037(P2006−263037)
【出願日】平成18年9月27日(2006.9.27)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】