説明

アクチュエータの分類方法、活性層の厚み測定方法、記録ヘッドの製造方法、及び、記録装置

【課題】ユニモルフ型のアクチュエータの正確な動作特性を容易に把握する。
【解決手段】個別電極と共通電極との間に配置された活性層及び活性層との間に共通電極を挟む非活性層を含むアクチュエータユニット全体の厚みであるアクチュエータ厚tを測定する(アクチュエータ厚測定工程)。個別電極と共通電極との間の静電容量Cを測定する(静電容量測定工程)。活性層の抗電界Eを測定する(抗電界測定工程)。活性層の抗電圧Vを測定する(抗電圧測定工程)。抗電圧Vを抗電界Eで除して活性層の厚みである活性層厚tを算出する(活性層厚測定工程)。アクチュエータ厚t、静電容量C及び活性層厚tに基づいてアクチュエータユニットの変位量δに関する動作特性パラメータを算出する(動作特性パラメータ算出工程)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ユニモルフ型のアクチュエータの分類方法、活性層の厚み測定方法、記録ヘッドの製造方法、及び、記録装置に関する。
【背景技術】
【0002】
記録用紙等の被記録媒体にインク滴を吐出するインクジェットプリンタが有するインクジェットヘッドとしては、インク滴を吐出するノズルとノズルに連通する圧力室とが形成された流路ユニットと、複数の圧力室内のインクに吐出エネルギーを付与する複数のアクチュエータとを有するものがある。アクチュエータは、圧力室の容積を変化させることにより各圧力室のインクに圧力を付加するものであり、複数の圧力室に跨る活性層となる第1圧電層と、各圧力室に対向する複数の個別電極と、複数の個別電極に第1圧電層を介して対向する基準電位が付与された共通電極と、第1圧電層との間に共通電極を挟む非活性層となる第2圧電層とを有するものが知られている(例えば、特許文献1参照)。このアクチュエータは、パルス状の駆動信号が各個別電極に付与されることによって、当該個別電極と共通電極との間に挟まれた第1圧電層の部分に対してその厚み方向に電界が作用し、この部分の第1圧電層を面方向に伸張させる。このとき、圧力室の容積が変化して圧力室内のインクに圧力(吐出エネルギー)が付与される。すなわち、このアクチュエータは、ユニモルフ型のアクチュエータである。
【0003】
ユニモルフ型のアクチュエータにおいては、製造条件(焼成条件、材料のばらつきなど)が異なることによって、動作特性にばらつきが生じる。したがって、上述した複数のアクチュエータを有するインクジェットヘッドにおいては、動作特性によってアクチュエータを選別し、同一の動作特性を有するアクチュエータのみを用いることが好ましい。このような圧電層を有するアクチュエータを選別する方法としては、アクチュエータの静電容量Cに基づいて推定された動作特性(変位特性)によって選別する技術が知られている(例えば、特許文献2参照)。
【0004】
【特許文献1】特開2007−185879号公報(図3)
【特許文献2】特開2005−169804号公報(図6)
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、ユニモルフ型のアクチュエータの動作特性は、静電容量Cのみで決定されるものではなく、活性層の厚みの影響が大きい。したがって、アクチュエータの静電容量Cのみで正確な動作特性を把握することが難しい。一方、活性層の厚みを測定するには、アクチュエータの断面を観察するなど繁雑な作業が必要となる。
【0006】
そこで、本発明は、ユニモルフ型のアクチュエータの正確な動作特性を容易に把握することができるアクチュエータの分類方法、活性層の厚み測定方法、記録ヘッドの製造方法、及び、記録装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明のアクチュエータの分類方法は、第1電極、第2電極、前記第1電極と前記第2電極との間に配置された圧電層である活性層及び前記活性層との間に前記第2電極を挟む非活性層を含むアクチュエータの分類方法であって、前記第1電極及び前記第2電極間に所定の電圧を印加することによって前記活性層を分極させたのちに、前記第1電極及び前記第2電極間に印加する電圧値を変化させることによって前記活性層の分極が0となるときの抗電圧Vの絶対値を測定する抗電圧測定工程と、前記抗電圧測定工程において測定された前記抗電圧Vに基づいて、前記第1電極及び前記第2電極間に電圧を印加したときの前記アクチュエータの変位量に関する動作特性パラメータを算出する動作特性パラメータ算出工程と、前記動作特性パラメータ算出工程において算出された前記動作特性パラメータによって前記アクチュエータを分類する分類工程とを備えている。
【0008】
上述したように、ユニモルフ型のアクチュエータの動作特性は、活性層の厚みが影響する。同じ材料且つ同じ製法によって形成されたアクチュエータにおいては、活性層に係る抗電界がほぼ同じ値となる。このとき、活性層に係る抗電圧と活性層の厚みとが比例関係にあるため、アクチュエータの動作特性であるアクチュエータの変位量は、活性層に係る抗電圧が影響する。本発明によると、アクチュエータの変位量に大きな影響を与える抗電圧Vを用いて動作特性パラメータを算出するため、アクチュエータの正確な動作特性を容易に把握することができる。
【0009】
本発明の活性層の厚み測定方法は、第1電極、第2電極、前記第1電極と前記第2電極との間に配置された圧電層である活性層及び前記活性層との間に前記第2電極を挟む非活性層を含むアクチュエータにおける前記活性層の厚み測定方法である。前記第1電極及び前記第2電極間に所定の電圧を印加することによって前記活性層を分極させたのちに、前記第1電極及び前記第2電極間に印加する電圧値を変化させることによって前記活性層の分極が0となるときの抗電圧Vの絶対値を測定する抗電圧測定工程と、前記抗電圧測定工程において測定された前記抗電圧Vを、前記活性層に係る抗電界Eで除して、前記活性層の厚みである活性層厚tを算出する活性層厚算出工程とを備えている。これによると、抗電圧Vと抗電界Eから活性層厚tを算出するため、活性層の厚みを正確に把握することができる。
【0010】
本発明のアクチュエータの分類方法においては、前記抗電圧測定工程において測定された前記抗電圧Vを、前記活性層に係る抗電界Eで除して、前記活性層の厚みである活性層厚tを算出する活性層厚算出工程をさらに備えており、前記動作特性パラメータ算出工程においては、前記活性層厚算出工程において算出された前記活性層厚tに基づいて、前記動作特性パラメータを算出することが好ましい。これによると、アクチュエータの変位量に大きな影響を与える活性層厚tを用いて動作特性パラメータを算出するため、より正確なアクチュエータの動作特性を把握することができる。
【0011】
このとき、前記動作特性パラメータ算出工程においては、前記活性層厚算出工程において算出された前記活性層厚t、及び、前記アクチュエータ全体の厚みであるアクチュエータ厚tに基づいて、前記動作特性パラメータを算出してもよい。
【0012】
または、前記動作特性パラメータ算出工程においては、前記活性層厚算出工程において算出された前記活性層厚t、及び、前記第1電極及び前記第2電極間の静電容量Cに基づいて、前記動作特性パラメータを算出してもよい。
【0013】
さらには、前記動作特性パラメータ算出工程においては、前記活性層厚算出工程において算出された前記活性層厚t、前記アクチュエータ全体の厚みであるアクチュエータ厚t、及び、前記第1電極及び前記第2電極間の静電容量Cに基づいて、前記動作特性パラメータを算出してもよい。
【0014】
これらによると、より一層正確な動作特性パラメータを算出することができる。
【0015】
また、本発明においては、前記活性層厚算出工程において算出された前記活性層厚tに前記第1電極及び前記第2電極間の静電容量Cを乗じた値を、前記活性層を挟む前記第1電極及び前記第2電極の少なくともいずれか一方の面積である電極面積Sで除することによって、前記活性層の誘電率εを算出する誘電率算出工程をさらに備えており、前記動作特性パラメータ算出工程においては、前記活性層厚t、前記アクチュエータ全体の厚みであるアクチュエータ厚t、及び、前記誘電率算出工程において算出された前記誘電率εに基づいて、前記動作特性パラメータを算出してもよい。
【0016】
または、前記活性層厚算出工程において算出された前記活性層厚tに前記第1電極及び前記第2電極間の静電容量Cを乗じた値を、前記活性層の誘電率εで除することによって、前記活性層を挟む前記第1電極及び前記第2電極の少なくともいずれか一方の面積である電極面積Sを算出する電極面積算出工程をさらに備えており、前記動作特性パラメータ算出工程においては、前記活性層厚t、前記アクチュエータ全体の厚みであるアクチュエータ厚t、及び、前記電極面積算出工程において算出された前記電極面積Sに基づいて、前記動作特性パラメータを算出してもよい。
【0017】
これによると、アクチュエータの変位量に影響を与える誘電率εや電極面積Sをさらに用いて動作特性パラメータを算出するため、さらにより一層正確な動作特性パラメータを算出することができる。
【0018】
また、本発明においては、前記アクチュエータ厚tを測定するアクチュエータ厚測定工程をさらに備えていてもよいし、前記静電容量Cを測定する静電容量測定工程をさらに備えていてもよい。これらによると、より一層正確な動作特性パラメータを算出することができる。
【0019】
本発明の記録ヘッドの製造方法は、共通インク室の出口から圧力室を介して液滴を吐出するノズルに至る複数の個別流路を有する流路ユニットを形成する流路ユニット形成工程と、前記圧力室に関連付けられた複数の第1電極、第2電極、前記複数の第1電極と前記第2電極との間に配置された圧電層である活性層及び前記活性層との間に前記第2電極を挟む非活性層を含むアクチュエータを形成するアクチュエータ形成工程と、前記第1電極及び前記第2電極間に所定の電圧を印加することによって前記活性層を分極させたのちに、前記第1電極及び前記第2電極間に印加する電圧値を変化させることによって前記活性層の分極が0となるときの抗電圧Vの絶対値を測定する抗電圧測定工程と、前記抗電圧測定工程において測定された前記抗電圧Vに基づいて、前記第1電極及び前記第2電極間に電圧を印加したときの前記アクチュエータの変位量に関する動作特性パラメータを算出する動作特性パラメータ算出工程と、前記動作特性パラメータ算出工程において算出された前記動作特性パラメータによって前記アクチュエータを分類する分類工程と、前記分類工程において同一に分類された前記動作特性パラメータを有する複数の前記アクチュエータを前記流路ユニットに組み付ける組み付け工程とを備えている。
【0020】
本発明によると、抗電圧Vを測定することによって、アクチュエータを破損することなく、活性層の厚みを容易に把握することができる。そして、記録ヘッドにおいて、同一に分類された動作特性パラメータを有する複数のアクチュエータが組み付けるため、当該記録ヘッドに係る各ノズルからの液滴吐出特性を均一化することができる。
【0021】
本発明の記録装置は、上述した記録ヘッドの製造方法によって製造された記録ヘッドと、前記記録ヘッドに係る前記アクチュエータを制御する制御手段とを備えており、前記制御手段が、当該アクチュエータに関する前記動作特性パラメータの値に基づいて、当該アクチュエータを駆動するときに前記第1電極及び前記第2電極間に印加する駆動電圧を決定する。
【0022】
本発明によると、異なる動作特性パラメータのアクチュエータを有する記録ヘッド間で、ノズルからの液滴吐出特性がばらつくのを抑制することができる。
【発明を実施するための最良の形態】
【0023】
以下、本発明の好適な実施形態について、図面を参照しつつ説明する。
【0024】
図1は、本発明に係る実施形態である制御装置を含むインクジェットプリンタの全体的な構成を示す概略側面図である。図1に示すように、インクジェットプリンタ101は、4つのインクジェットヘッド1を有するカラーインクジェットプリンタである。このインクジェットプリンタ101には、図中左方に給紙部11が、図中右方に排紙部12がそれぞれ構成されている。
【0025】
インクジェットプリンタ101の内部には、給紙部11から排紙部12に向かって用紙Pが搬送される用紙搬送経路が形成されている。給紙部11のすぐ下流側には、用紙を狭持搬送する一対の送りローラ5a、5bが配置されている。一対の送りローラ5a、5bは、用紙Pを給紙部11から図中右方に送り出すためのものである。用紙搬送経路の中間部には、搬送機構13が設けられている。この搬送機構13は、2つのベルトローラ6、7と、両ローラ6、7の間に架け渡されるように巻回されたエンドレスの搬送ベルト8と、搬送ベルト8によって囲まれた領域内に配置されたプラテン15とを含む。プラテン15は、インクジェットヘッド1と対向する位置において搬送ベルト8が下方に撓まないように搬送ベルト8を支持するものである。ベルトローラ7と対向する位置には、ニップローラ4が配置されている。ニップローラ4は、給紙部11から送りローラ5a、5bによって送り出された用紙Pを搬送ベルト8の外周面8aに押さえ付けるものである。
【0026】
搬送モータ19(図6参照)がベルトローラ6を回転させることによって、搬送ベルト8が走行される。これにより、搬送ベルト8が、ニップローラ4によって外周面8aに押さえ付けられた用紙Pを粘着保持しつつ排紙部12に向けて搬送する。なお、搬送ベルト8の表面には、弱粘着性のシリコン樹脂層が形成されている。
【0027】
搬送ベルト8のすぐ下流側には、剥離機構14が設けられている。剥離機構14は、搬送ベルト8の外周面8aに粘着されている用紙Pを外周面8aから剥離して、図中右方の排紙部12に向けて導くように構成されている。
【0028】
4つのインクジェットヘッド1は、4色のインク(マゼンタ、イエロー、シアン、ブラック)に対応して、搬送方向に沿って4つ並べて固定されている。つまり、このインクジェットプリンタ101は、ライン式プリンタである。4つのインクジェットヘッド1は、その下端にヘッド本体2をそれぞれ有している。ヘッド本体2は、搬送方向に直交した方向に長尺な細長い直方体形状となっている。また、ヘッド本体2の底面が外周面8aに対向するインク吐出面2aとなっている。搬送ベルト8によって搬送される用紙Pが4つのヘッド本体2のすぐ下方側を順に通過する際に、この用紙Pの上面すなわち印刷面に向けてインク吐出面2aから各色のインクが吐出されることで、用紙Pの印刷面に所望のカラー画像を形成できるようになっている。
【0029】
次に、図2〜図5を参照しつつ、ヘッド本体2について説明する。図2は、ヘッド本体2の平面図である。図3は、図2の一点鎖線で囲まれた領域の拡大図である。なお、図3では説明の都合上、アクチュエータユニット21の下方にあって破線で描くべき圧力室110、アパーチャ112及びノズル108を実線で描いている。図4は、図3に示すIV−IV線に沿った部分断面図である。図5は、アクチュエータユニット21の部分断面図である。
【0030】
ヘッド本体2は、インクを供給するリザーバユニット(不図示)やアクチュエータユニット21を駆動させる駆動信号を生成するドライバIC51(図6参照)が組み付けられることによって、インクジェットヘッド1を構成するものである。
【0031】
図2に示すように、ヘッド本体2は、4つのアクチュエータユニット21が、流路ユニット9の上面9aに固定されている。図3に示すように、流路ユニット9は、圧力室110等を含むインク流路が内部に形成されている。アクチュエータユニット21は、各圧力室110に対応した複数のアクチュエータを含んでおり、ドライバIC51に駆動されることによって、圧力室110内のインクに選択的に吐出エネルギーを付与する機能を有する。
【0032】
流路ユニット9は、直方体形状となっている。流路ユニット9の上面9aには、リザーバユニットのインク流出流路(不図示)に対応して、計10個のインク供給口105bが開口している。流路ユニット9の内部には、図2及び図3に示すように、インク供給口105bに連通するマニホールド流路105及びマニホールド流路105から分岐した副マニホールド流路105aが形成されている。流路ユニット9の下面には、多数のノズル108がマトリクス状に配置されたインク吐出面2aが形成されている。圧力室110も流路ユニット9におけるアクチュエータユニット21の固定面においてノズル108と同様マトリクス状に多数配列されている。
【0033】
本実施形態では、等間隔に流路ユニット9の長手方向に並ぶ圧力室110の列が、短手方向に互いに平行に16列配列されている。各圧力室列に含まれる圧力室110の数は、後述のアクチュエータユニット21の外形形状(台形形状)に対応して、その長辺側から短辺側に向かって次第に少なくなるように配置されている。ノズル108も、これと同様の配置がされている。
【0034】
図4に示すように、流路ユニット9は、ステンレス鋼など金属材料からなる9枚のプレート122〜130から構成されている。これらプレート122〜130は、主走査方向に長尺な矩形状の平面を有する。
【0035】
これらプレート122〜130を互いに位置合わせしつつ積層することによって、プレート122〜130に形成された貫通孔が連結され、流路ユニット9内に、マニホールド流路105から副マニホールド流路105a、そして副マニホールド流路105aの出口から圧力室110を経てノズル108に至る多数の個別インク流路132が形成される。
【0036】
次に、流路ユニット9におけるインクの流れについて説明する。リザーバユニットからインク供給口105bを介して流路ユニット9内に供給されたインクは、マニホールド流路105から副マニホールド流路105aに分岐される。副マニホールド流路105a内のインクは、各個別インク流路132に流れ込み、絞りとして機能するアパーチャ112及び圧力室110を介してノズル108に至る。
【0037】
アクチュエータユニット21について説明する。図2に示すように、アクチュエータユニット21は、それぞれ台形の平面形状を有している。また、アクチュエータユニット21は、強誘電性を有するチタン酸ジルコン酸鉛(PZT)系のセラミックス材料から形成され、図5に示すように、3枚の圧電シート(圧電層)141〜143から構成されている。圧電シート141上の圧力室110に対向する位置には、個別電極135が形成されている。個別電極135は、圧力室110に対向して配置された電極部と、圧力室110に対向する領域の外にまで引き出された延出部とを有し、この延出部上にランド136が形成されている。最上層の圧電シート141とその下側の圧電シート142との間にはシート全面に形成された共通電極134が介在している。
【0038】
共通電極134は、すべての圧力室110に対応する領域において等しくグランド電位が付与されている。一方、個別電極135は、ドライバIC51と電気的に接続されており、このドライバIC51からの駆動信号が選択的に入力されるようになっている。つまり、アクチュエータユニット21において、個別電極135と圧力室110とで挟まれた部分が、個別のアクチュエータとして働き、圧力室110の数に対応した複数のアクチュエータが作り込まれている。
【0039】
ここで、アクチュエータユニット21の駆動方法について述べる。圧電シート141はその厚み方向に分極されており、個別電極135に対応した部分が、圧電効果によって撓む活性部として働く。そして、個別電極135を共通電極134と異なる電位にすると、この活性部には分極方向に電界が印加される。活性部は、電界と分極の方向が同じとき、厚み方向に伸張し面方向に収縮する。なお、このときの変位量は、厚み方向より面方向の方が大きい。このように、アクチュエータユニット21は、圧力室110から離れた上側1枚の圧電シート141を、活性部を含む活性層とし、且つ、圧力室110に近い下側2枚の圧電シート142、143を非活性層とした、いわゆるユニモルフタイプのアクチュエータである。圧電シート141〜143は圧力室110を区画するキャビティプレート122の上面に固定されている。ここで、圧電シート141における電界印加部分とその下方の圧電シート142、143との間で平面方向への歪みに差が生じると、圧電シート141〜143全体が圧力室110の内側へ凸になるように変形(ユニモルフ変形)する。これにより、圧力室110内のインクに圧力(吐出エネルギー)が付与され、圧力室110内に圧力波が発生する。そして、発生した圧力波が圧力室110からノズル108まで伝播することによってノズル108からインク滴が吐出される。
【0040】
なお、本実施形態においては、予め個別電極135に所定の電位を付与しておき、吐出要求があるごとに一旦個別電極135にグランド電位を付与し、その後所定のタイミングにて再び所定の電位を個別電極135に付与するような駆動信号をドライバIC51から出力させる。この場合、個別電極135がグランド電位になるタイミングで、圧力室110内のインクの圧力が降下して副マニホールド流路105aから個別インク流路132へとインクが吸い込まれる。その後、再び個別電極135を所定の電位にしたタイミングで、圧力室110内のインクの圧力が上昇し、ノズル108からインク滴が吐出される。つまり、個別電極135に矩形波のパルスを付与する。このパルス幅は、圧力室110内において圧力波が副マニホールド流路105aの出口からノズル108の先端まで伝播する時間長さであるAL(Acoustic Length)であり、圧力室110内のインクが負圧状態から正圧状態に反転するときに両者の圧力が合わさるため、強い圧力でインク滴をノズル108から吐出させることができる。
【0041】
次に、制御装置16について図6を参照しつつ詳細に説明する。図6は、制御装置16の機能ブロック図である。なお、図6においては、4つのインクジェットヘッド1のうち1つのみを模式的に示している。図6に示すように、制御装置16は、動作パラメータ記憶部65と、印刷データ記憶部63と、ヘッド制御部64と、搬送モータ制御部66とを有している。
【0042】
動作パラメータ記憶部65は、アクチュエータユニット21において、個別電極135及び共通電極134間に電圧を印加したときのアクチュエータユニット21の変位量δを示す動作特性パラメータを記憶するものである。動作特性パラメータは、アクチュエータユニット21の製造時において算出される。インクジェットヘッド1には4つのアクチュエータユニット21が含まれているが、後述するように、これら4つのアクチュエータユニット21は、ほぼ同じ動作特性パラメータを有しているため、動作パラメータ記憶部65には1つの動作特性パラメータが記憶されている。なお、動作特性パラメータの具体的な内容及び算出方法については後述する。
【0043】
印刷データ記憶部63は、図示しないホストコンピュータから転送された印刷データを記憶するものである。印刷データには、用紙Pに形成すべき画像に関する画像データが含まれる。ヘッド制御部64は、搬送機構13によって搬送された用紙Pに印刷データ記憶部63に記憶された印刷データに基づいて画像が形成されるように、ドライバIC51に制御信号を出力することによってインクジェットヘッド1を制御するものである。
【0044】
搬送モータ制御部66は、所定の速度パターン(加速パターン、定速パターン及び減速パターンを含む)で搬送ベルト8が駆動されるように搬送モータ19の駆動速度を制御するものである。
【0045】
ヘッド制御部64は、印刷データ記憶部63に記憶された印刷データに含まれる画像データに関する画像が搬送された用紙Pに印刷されるように、インクジェットヘッド1のノズル108からのインク滴の吐出を制御するものである。このとき、ヘッド制御部64は、動作パラメータ記憶部65に記憶されている動作特性パラメータに基づいて、ノズル108から吐出されるインク滴の体積が所定量になるように、ドライバIC51を制御する。具体的には、動作特性パラメータが示すアクチュエータユニット21の変位量が大きくなるに伴って、駆動信号のパルス幅が小さくなるような波形パターンを生成(決定)する。これにより、異なる動作パラメータを有するアクチュエータユニット21を含むインクジェットヘッド1間で、ノズル108からのインク吐出特性がばらつくのを抑制することができる。
【0046】
次に、図7を参照しつつ、本発明に係るインクジェットヘッド1の製造方法について説明する。図7は、インクジェットヘッド1の製造方法を示す工程ブロック図である。図7に示すように、インクジェットヘッド1の製造方法は、流路ユニット形成工程と、アクチュエータ形成工程と、アクチュエータ厚測定工程と、静電容量測定工程と、抗電圧抗電界測定工程と、活性層厚算出工程と、誘電率算出工程と、動作パラメータ算出工程と、分類工程と、組み付け工程とを有している。
【0047】
まず、流路ユニット形成工程においては、上述したように、プレート122〜130を互いに位置合わせしつつ積層及び接着することによって、流路ユニット9を形成する。次に、アクチュエータ形成工程においては、圧電シート141となるグリーンシートの表面に、共通電極134となる導体パターンを印刷し、さらに、圧電シート141となるグリーンシートとの間で共通電極134となる導体パターンを挟持するように圧電シート142、143となるグリーンシートを順に積層して積層体を形成する。そして、この積層体を焼成した後に、圧電シート141の表面に、複数の個別電極135を含む導体パターンを印刷して再び焼成し、アクチュエータユニット21を形成する。
【0048】
アクチュエータ厚測定工程においては、アクチュエータ形成工程において形成されたアクチュエータユニット21全体の厚みであるアクチュエータ厚tを測定する。本実施形態では、静電容量測定工程において、当該アクチュエータユニット21に係る全ての個別電極135と共通電極134との間の総静電容量を測定し、測定した総静電容量を個別電極135の数で除することによって、個別電極135の静電容量Cの平均値を算出する。なお、サンプリングに当たって、アクチュエータユニット21毎に、所定箇所及び所定数の個別電極135に係る個別の静電容量を測定し、その平均値を静電容量Cとしてもよい。
【0049】
さらに、抗電圧抗電界測定工程においては、アクチュエータユニット21の活性層である圧電シート141の抗電界Eを予め求めておく。抗電界とは、圧電シート141のような強誘電体において分極反転を起こすときの電界であり、強誘電体の材質に係る電気特性を示すパラメータの1つである。なお、抗電圧抗電界測定工程においては、圧電シート141の抗電界Eを測定するにあたって、圧電シート141そのものを用いてもよいが、本実施形態では、アクチュエータ形成工程において同一の材料及び焼成条件の同一ロットで形成されたアクチュエータユニット21から選ばれた測定サンプルの抗電界Eを測定する。同一の材料及び焼成条件で形成されたアクチュエータユニット21間では、抗電界Eがほぼ同じになる。
【0050】
ここで、図8及び図9を参照しつつ、測定サンプルの抗電界Eを測定する方法について説明する。図8は、抗電圧抗電界測定工程において測定サンプルに印加する電圧の波形パターンを示したものである。図9は、図8に示す波形パターンの電圧が印加された測定サンプルから得られる分極−電圧ヒステリシス特性を示すグラフである。まず、測定サンプルに係る分極−電圧ヒステリシス特性の測定を行う。具体的には、測定サンプルの個別電極135と共通電極134との間に、図8に示すような三角波が連続する波形パターンを有する電圧を印加する。なお、波形パターンのピーク電圧であるV0、−V0は、測定サンプルを完全に分極させる電圧である。この波形パターンの電圧が測定サンプルに印加されると、図9に示すように、測定サンプルが分極していない状態から電圧の印加が開始され、印加電圧が上昇するに伴って測定サンプルの分極が大きくなる。さらに印加電圧が上昇してV1になったとき、測定サンプルが完全に分極する。
【0051】
そして、測定サンプルが完全に分極した後に印加電圧が降下する。印加電圧が降下するに伴って測定サンプルの分極が小さくなるが、印加電圧が0となっても、測定サンプルに残留分極が発生しているため、測定サンプルの分極が0にならない。印加電圧がさらに降下して−V1になったとき、測定サンプルの分極が0となる。そして、印加電圧がさらに降下すると分極の反転が始まり、−V0になったとき、測定サンプルが再び完全に分極する。その後、印加電圧が上昇するに伴って測定サンプルの分極が小さくなるが、印加電圧が0となっても、測定サンプルに残留分極が発生しているため、測定サンプルの分極が0にならない。印加電圧がさらに降下してV1になったとき、測定サンプルの分極が再び0となる。このように、分極が0となるときの印加電圧V1、−V1の絶対値を測定サンプルの抗電圧Vとする。そして、測定サンプルの活性層の厚みtを測定し、測定した厚みtで抗電圧Vを除して抗電界Eを算出する。なお、活性層の厚みtは、測定サンプルを厚み方向に沿って切断し、その断面を電子顕微鏡で観測することによって測定することが可能である。
【0052】
さらに、抗電圧抗電界測定工程においては、被分類対象物としてのアクチュエータユニット21の活性層、すなわち、圧電シート141に係る抗電圧Vを測定する。上述の測定サンプルと同様に、まず、圧電シート141に係る分極−電圧ヒステリシス特性の測定を行う。つまり、個別電極135と共通電極134との間に、図8に示す三角波の電圧を印加することによって、図9に示すような、圧電シート141に係る分極−電圧ヒステリシス特性を測定する。そして、測定した分極−電圧ヒステリシス特性から得られた、分極が0となるときの印加電圧V1、あるいは−V1の絶対値を圧電シート141の抗電圧Vとする。
【0053】
図7に戻って、活性層厚算出工程においては、圧電シート141すなわち活性層の厚みである活性層厚tを算出する。活性層厚tは、
=V/E
によって算出される。
【0054】
誘電率算出工程においては、静電容量測定工程において測定された静電容量Cと活性層厚算出工程において算出された活性層厚tと個別電極135の表面積である電極面積Sから圧電シート141、すなわち、活性層の誘電率εを算出する。なお、電極面積Sは、個別電極135の設計値を用いるものとする。静電容量Cは、
C=ε・S/t (ε=ε・ε' ε:圧電シート141の誘電率、ε:真空の誘電率、ε':比誘電率)
で表される。したがって、誘電率εは、
ε=C・t/S
によって算出される。
【0055】
その後、動作パラメータ算出工程においては、アクチュエータ厚測定工程において測定されたアクチュエータ厚t、静電容量測定工程において測定された静電容量C、及び、活性層厚算出工程において算出された活性層厚t、及び、誘電率算出工程において算出された誘電率εに基づいて、動作特性パラメータを算出する。上述したように、動作特性パラメータは、アクチュエータユニット21において、個別電極135及び共通電極134間に電圧を印加したときのアクチュエータユニット21の変位量δを示すものである。この変位量δは、実測や解析によって求められた値を使って導かれる、
δ=f(t,t,ε)
で表される。この式に基づいて変位量δが動作特性パラメータとして算出される。
【0056】
そして、分類工程においては、動作特性パラメータ算出工程において算出された動作特性パラメータによって各アクチュエータユニット21を分類する。その後、組み付け工程においては、分類工程において同一に分類された動作特性パラメータを有する4つアクチュエータユニットを、流路ユニット形成工程において形成された流路ユニットに組み付ける。さらに、必要な電装系部品(アクチュエータユニット21に接続される、ドライバIC51(図6参照)が実装されたCOF(Chip On Film)、制御基板など)や、インク供給系部品、保護カバーなどを組み付けてインクジェットヘッド1の製造が完了する。
【0057】
以上、説明した本実施形態によると、圧電シート141に係る抗電圧V(実測値)及び抗電界E(予め求められた値)に基づいて圧電シート141すなわち活性層の厚みである活性層厚tを算出し、静電容量C(実測値)、活性層厚t及び電極面積S(予め決められた値)から誘電率εを算出する。そして、活性層厚t、アクチュエータ厚t及び誘電率εを用いて動作特性パラメータを算出する。このように、アクチュエータユニット21の変位量に大きな影響を与える活性層厚t、アクチュエータ厚t及び誘電率εを用いて動作特性パラメータを算出しているため、当該アクチュエータユニット21に係る正確な動作特性パラメータを容易に把握することができる。このとき、活性層の抗電圧Vを用いて活性層厚tを算出するため、アクチュエータユニット21を破損することがない。さらに、インクジェットヘッド1において、同一に分類された動作特性パラメータを有する複数のアクチュエータユニット21が組み付けられるため、当該インクジェットヘッド1に係る各ノズルからのインク吐出特性を均一化することができる。
【0058】
さらに、静電容量C及びアクチュエータ厚tの実測値を用いているため、より正確な動作特性パラメータを算出することができる。
【0059】
また、ヘッド制御部64が、動作パラメータ記憶部65に記憶されているアクチュエータユニット21に関する動作特性パラメータに基づいて、ノズル108から吐出されるインク滴の体積が所定量になるように、ドライバIC51を制御するため、異なる動作パラメータを有するアクチュエータユニット21を含むインクジェットヘッド1間で、ノズル108からのインク吐出特性がばらつくのを抑制することができる。
【0060】
以上、本発明の好適な実施形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能なものである。
【0061】
例えば、上述した実施形態においては、静電容量測定工程において測定された静電容量Cと、実測された抗電圧Vから算出された活性層厚tと、設計値の電極面積Sとから誘電率εを算出する構成であるが、予め決定された静電容量Cを用いて誘電率εを算出する構成であってもよいし、実測値の電極面積Sを用いて誘電率εを算出する構成であってもよい。
【0062】
さらに、上述した実施形態においては、算出された活性層厚t、アクチュエータ厚測定工程において測定されたアクチュエータ厚t及び算出された誘電率εを用いてアクチュエータユニット21の変位量δを算出する構成であるが、実測された静電容量C、算出された活性層厚t及び予め決定された誘電率εを用いて電極面積Sを算出し、活性層厚t、アクチュエータ厚t及び算出した電極面積Sを用いて変位量δを算出する構成であってもよい。すなわち、
C=ε・S/t
から導かれる、
S=C・t/ε
によって電極面積Sを算出し、変位量δを、実測や解析によって求められた値を使って導かれる、
δ=f'(t,t,S)
に基づいて算出する構成であってもよい。
【0063】
このとき、予め決定された誘電率ε及び電極面積Sを用いて、変位量δを算出する構成であってもよい。つまり、
=ε・S/C
とし、変位量δを、実測や解析によって求められた値を使って導かれる、
δ=f''(t,t
に基づいて算出する構成であってもよい。なお、予め決定されたアクチュエータ厚tを用いてもよい。もちろん、実測で得られる抗電圧Vを使って導かれる
δ=f'''(V)
に基づいて動作特性パラメータを算出する構成であってもよい。
【0064】
加えて、上述した実施形態においては、複数の個別電極135と共通電極134とに圧電シート141が挟持されることによって、複数のアクチュエータを含むアクチュエータユニット21が形成される構成であるが、圧電シートが1つの個別電極と共通電極とに挟持されることによって各アクチュエータが形成される構成であってもよい。
【0065】
また、上述した実施形態においては、インク滴を吐出するインクジェットヘッド1に本発明を適用した例について説明したが、本発明は、ユニモルフ型のあらゆるアクチュエータを有する記録ヘッドに対して広く適用可能である。
【図面の簡単な説明】
【0066】
【図1】本発明の第1実施形態に係るインクジェットプリンタの外観側面図である。
【図2】図2に示すヘッド本体の平面図である。
【図3】図2に示す一点鎖線で囲まれた領域の拡大図である。
【図4】図3に示すIV−IV線断面図である。
【図5】図2に示すアクチュエータユニットの断面図である。
【図6】図1に示す制御装置の機能ブロック図である。
【図7】図1に示すインクジェットヘッドの製造方法示す工程ブロック図である。
【図8】図7に示す抗電圧抗電界測定工程においてアクチュエータユニットに出力する駆動波形を示す図である。
【図9】図7に示す抗電圧抗電界測定工程において測定される抗電圧を説明するための図である。
【符号の説明】
【0067】
1 インクジェットヘッド
2 ヘッド本体
9 流路ユニット
16 制御装置
21 アクチュエータユニット
63 印刷データ記憶部
64 ヘッド制御部
65 動作パラメータ記憶部
66 搬送モータ制御部
101 インクジェットプリンタ
108 ノズル
110 圧力室
134 共通電極
135 個別電極
141〜143 圧電シート
142 圧電シート

【特許請求の範囲】
【請求項1】
第1電極、第2電極、前記第1電極と前記第2電極との間に配置された圧電層である活性層及び前記活性層との間に前記第2電極を挟む非活性層を含むアクチュエータの分類方法であって、
前記第1電極及び前記第2電極間に所定の電圧を印加することによって前記活性層を分極させたのちに、前記第1電極及び前記第2電極間に印加する電圧値を変化させることによって前記活性層の分極が0となるときの抗電圧Vの絶対値を測定する抗電圧測定工程と、
前記抗電圧測定工程において測定された前記抗電圧Vに基づいて、前記第1電極及び前記第2電極間に電圧を印加したときの前記アクチュエータの変位量に関する動作特性パラメータを算出する動作特性パラメータ算出工程と、
前記動作特性パラメータ算出工程において算出された前記動作特性パラメータによって前記アクチュエータを分類する分類工程とを備えていることを特徴とするアクチュエータの分類方法。
【請求項2】
前記抗電圧測定工程において測定された前記抗電圧Vを、前記活性層に係る抗電界Eで除して、前記活性層の厚みである活性層厚tを算出する活性層厚算出工程をさらに備えており、
前記動作特性パラメータ算出工程においては、前記活性層厚算出工程において算出された前記活性層厚tに基づいて、前記動作特性パラメータを算出することを特徴とする請求項1に記載のアクチュエータの分類方法。
【請求項3】
前記動作特性パラメータ算出工程においては、前記活性層厚算出工程において算出された前記活性層厚t、及び、前記アクチュエータ全体の厚みであるアクチュエータ厚tに基づいて、前記動作特性パラメータを算出することを特徴とする請求項2に記載のアクチュエータの分類方法。
【請求項4】
前記動作特性パラメータ算出工程においては、前記活性層厚算出工程において算出された前記活性層厚t、及び、前記第1電極及び前記第2電極間の静電容量Cに基づいて、前記動作特性パラメータを算出することを特徴とする請求項2に記載のアクチュエータの分類方法。
【請求項5】
前記動作特性パラメータ算出工程においては、前記活性層厚算出工程において算出された前記活性層厚t、前記アクチュエータ全体の厚みであるアクチュエータ厚t、及び、前記第1電極及び前記第2電極間の静電容量Cに基づいて、前記動作特性パラメータを算出することを特徴とする請求項2に記載のアクチュエータの分類方法。
【請求項6】
前記活性層厚算出工程において算出された前記活性層厚tに前記第1電極及び前記第2電極間の静電容量Cを乗じた値を、前記活性層を挟む前記第1電極及び前記第2電極の少なくともいずれか一方の面積である電極面積Sで除することによって、前記活性層の誘電率εを算出する誘電率算出工程をさらに備えており、
前記動作特性パラメータ算出工程においては、前記活性層厚t、前記アクチュエータ全体の厚みであるアクチュエータ厚t、及び、前記誘電率算出工程において算出された前記誘電率εに基づいて、前記動作特性パラメータを算出することを特徴とする請求項2に記載のアクチュエータの分類方法。
【請求項7】
前記活性層厚算出工程において算出された前記活性層厚tに前記第1電極及び前記第2電極間の静電容量Cを乗じた値を、前記活性層の誘電率εで除することによって、前記活性層を挟む前記第1電極及び前記第2電極の少なくともいずれか一方の面積である電極面積Sを算出する電極面積算出工程をさらに備えており、
前記動作特性パラメータ算出工程においては、前記活性層厚t、前記アクチュエータ全体の厚みであるアクチュエータ厚t、及び、前記電極面積算出工程において算出された前記電極面積Sに基づいて、前記動作特性パラメータを算出することを特徴とする請求項2に記載のアクチュエータの分類方法。
【請求項8】
前記アクチュエータ厚tを測定するアクチュエータ厚測定工程をさらに備えていることを特徴とする請求項3及び請求項5〜7に記載のアクチュエータの分類方法。
【請求項9】
前記静電容量Cを測定する静電容量測定工程をさらに備えていることを特徴とする請求項4〜7に記載のアクチュエータの分類方法。
【請求項10】
第1電極、第2電極、前記第1電極と前記第2電極との間に配置された圧電層である活性層及び前記活性層との間に前記第2電極を挟む非活性層を含むアクチュエータにおける前記活性層の厚み測定方法であって、
前記第1電極及び前記第2電極間に所定の電圧を印加することによって前記活性層を分極させたのちに、前記第1電極及び前記第2電極間に印加する電圧値を変化させることによって前記活性層の分極が0となるときの抗電圧Vの絶対値を測定する抗電圧測定工程と、
前記抗電圧測定工程において測定された前記抗電圧Vを、前記活性層に係る抗電界Eで除して、前記活性層の厚みである活性層厚tを算出する活性層厚算出工程とを備えていることを特徴とする活性層の厚み測定方法。
【請求項11】
共通インク室の出口から圧力室を介して液滴を吐出するノズルに至る複数の個別流路を有する流路ユニットを形成する流路ユニット形成工程と、
前記圧力室に関連付けられた複数の第1電極、第2電極、前記複数の第1電極と前記第2電極との間に配置された圧電層である活性層及び前記活性層との間に前記第2電極を挟む非活性層を含むアクチュエータを形成するアクチュエータ形成工程と、
前記第1電極及び前記第2電極間に所定の電圧を印加することによって前記活性層を分極させたのちに、前記第1電極及び前記第2電極間に印加する電圧値を変化させることによって前記活性層の分極が0となるときの抗電圧Vの絶対値を測定する抗電圧測定工程と、
前記抗電圧測定工程において測定された前記抗電圧Vに基づいて、前記第1電極及び前記第2電極間に電圧を印加したときの前記アクチュエータの変位量に関する動作特性パラメータを算出する動作特性パラメータ算出工程と、
前記動作特性パラメータ算出工程において算出された前記動作特性パラメータによって前記アクチュエータを分類する分類工程と、
前記分類工程において同一に分類された前記動作特性パラメータを有する複数の前記アクチュエータを前記流路ユニットに組み付ける組み付け工程とを備えていることを特徴とする記録ヘッドの製造方法。
【請求項12】
請求項11に記載の記録ヘッドの製造方法によって製造された記録ヘッドと、
前記記録ヘッドに係る前記アクチュエータを制御する制御手段とを備えており、
前記制御手段が、当該アクチュエータに関する前記動作特性パラメータの値に基づいて、当該アクチュエータを駆動するときに前記第1電極及び前記第2電極間に印加する駆動電圧を決定することを特徴とする記録装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2009−135257(P2009−135257A)
【公開日】平成21年6月18日(2009.6.18)
【国際特許分類】
【出願番号】特願2007−309808(P2007−309808)
【出願日】平成19年11月30日(2007.11.30)
【出願人】(000005267)ブラザー工業株式会社 (13,856)
【Fターム(参考)】