説明

アスベスト含有物のリサイクル方法

【課題】高温の熱エネルギーを必要とせず、アスベスト含有物を無害化し、この処理物を建材等の成形体として再利用する方法を提供する。
【解決手段】反応器にアスベスト含有物と衝撃体を入れ、反応器の回転等により、衝撃体に衝撃エネルギーを発生させる。衝撃体とアスベスト含有物が激しく衝突し、アスベストの繊維状粒子の結合間距離を伸ばすことにより、アスベストの繊維状粒子の結晶構造を非晶質に変えて無害化し、成形原料とする。得られた成形原料を加圧等により成形して、建材等に再利用する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アスベスト含有物を無害化し、成形して再利用するアスベスト含有物のリサイクル方法に関する。
【背景技術】
【0002】
アスベストは耐熱性、耐薬品性、絶縁性等に優れるため、従来から建築材料、電気製品材料、自動車製品材料等幅広く使用されてきた。しかし、アスベストは空気中に浮遊しやすく、その結晶構造が繊維状である。人が吸入し、肺に一旦刺さると排出されにくい。そのため、吸入されたアスベストが肺に蓄積し、肺がん、石綿肺などの呼吸器の病気を起こすことがある。このため、現在ではアスベストの使用は禁止され、既存のアスベスト製品の適正処理が進められている。
【0003】
アスベストの適正処理をするべく、様々な技術開発が進められているが、大別すると、高温の熱で溶融する方法(例えば、特許文献1)、及び無機材料でガラス化する方法(例えば、特許文献2)が挙げられる。
【0004】
特許文献1では、石綿を含む物質に、Si、Ca、及び/又はAlを含む物質を所定条件にて添加混合して微粉砕した後、得られた混合物を400〜1200℃で加熱処理し、非石綿物質に変換している。アスベストの繊維状粒子は、繊維状粒子を構成する「−Si−O−」と「−Mg−O−」の結合長が異なるため、前者と後者が結合した場合に捩れることにより生じている。加熱することにより、同一族に属するMgとCaが入れ替わり、「−Si−O−」と「−Ca−O−」の結合長が同じになり、前者と後者が結合しても捩れないため、繊維状粒子が消失する。
【0005】
特許文献2は、ケイ酸塩類を主成分とし、Na、K、Ca、Mg及びAlを1種以上含有するアルカリ性水溶液と、ガラスの微粒子の容積比率91:9〜99:1の混合物からなる改質硬化剤の発明である。この改質硬化剤をアスベスト含有物の表面、あるいは内部まで塗布含浸させてアスベストを改質硬化させている。
【特許文献1】特開2003−094006号公報
【特許文献2】特開2002−137976号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
特許文献1記載の発明では、400℃〜1200℃の高温度で加熱処理しなければならず、無害化処理に大量の熱エネルギーを消費するという課題を有する。
【0007】
また、上記発明では加熱処理に用いる溶融炉は固定されるものであり、アスベスト含有物を回収した後、溶融炉まで運搬しなければ処理できない問題がある。
【0008】
更に、アスベスト廃棄物には通常多くの有機物や塩素源も含まれるため、不完全燃焼がおこると、ダイオキシン類が生成するおそれがある。
【0009】
更に、上記発明では非処理物と添加物を微粉砕混合する工程と、加熱処理する工程の2工程からなるために処理が煩雑になるなどの問題がある。
【0010】
更には、加熱処理によって溶融され、処理物の再加工が困難である。このため処理物は廃棄され、再利用できず資源の有効活用ができないとともに、廃棄物の増加を誘因し、環境悪化につながるという問題がある。
【0011】
特許文献2記載の発明は、硬化剤を被覆し、アスベスト分子を硬化させて活性化を抑制しただけであり、アスベストの繊維質はそのまま残ってしまう。このため、硬化剤が経年変化により腐食、風化等して、被覆されたアスベスト分子が飛散し、再びアスベスト公害が生じる恐れがある。そして、硬化剤を表面に被覆しただけなので、アスベストの繊維質はそのまま残存した状態であるため、これを再利用することはできない。
【0012】
本発明は上記事項に鑑みてなされたものであり、温和な条件下でアスベスト含有物を無害化し、無害化した原料を成形して再利用することを目的とする。
【課題を解決するための手段】
【0013】
本発明に係るアスベスト含有物のリサイクル方法は、アスベスト含有物に外力を付加してアスベストの繊維状粒子の結合間距離を伸ばし、前記繊維状粒子を非晶質にして成形原料にする工程と、前記成形原料を所定の形状に成形する工程と、を具備する、ことを特徴とする。
【0014】
また、反応器に前記アスベスト含有物と衝撃体を入れて回転又は振動させ、前記衝撃体による衝撃で前記アスベストの繊維状粒子の結合間距離を伸ばしてもよい。
【0015】
また、前記反応器に衝撃型ミルを用いて前記衝撃体による衝撃エネルギーを増加させてもよい。
【0016】
また、前記反応器に更に還元剤を入れ、前記衝撃体及び前記還元剤による一体とした衝撃で前記アスベストの繊維状粒子の結合間距離を伸ばし、前記繊維状粒子を非晶質にする、ことを特徴とする。
【0017】
また、前記還元剤が前記アスベストの構成成分の一部を還元する、ことを特徴とする。
【0018】
また、前記アスベストの構成成分の一部が鉄成分あるいはケイ素である、ことを特徴とする。
【0019】
また、前記還元剤として二A族、三A族及び四A族元素から選択される1以上の金属を使用してもよい。
【0020】
また、前記還元剤としてアルミニウムを使用し、前記アスベスト含有物が水を含有していてもアスベストの構成成分を還元する、ことを特徴とする。
【0021】
また、前記成形原料を加圧して成形してもよい。
【0022】
また、真空下で前記成形原料を加圧してもよい。
【0023】
また、前記成形原料に無機質結合材を混合して加圧し、空気中或いは炭酸ガス雰囲気中にて養生を行ってもよい。
【発明の効果】
【0024】
本発明によれば、温和な条件下でアスベスト含有物を無害化でき、無害化した原料を成形加工して建材等に再利用することができる。
【発明を実施するための最良の形態】
【0025】
アスベスト含有物のリサイクル方法に係る実施の形態は、図1に示すように、アスベスト含有物を無害化し成形原料にする工程と、成形原料を成形する工程から構成される。
【0026】
まず、図2を参照して、無害化し成形原料にする工程について説明する。図1は無害化処理工程を模式的に示したものである。
【0027】
反応器1にアスベスト含有物3、衝撃体4を入れて密閉し、反応器1を回転あるいは振動させ、衝撃体4に衝撃エネルギーを発生させる。反応器1内では衝撃体4とアスベスト含有物3が衝突する。衝撃体4と反応器1の内壁との間、あるいは衝撃体4と衝撃体4との間でアスベスト含有物3が磨り潰され、アスベストの繊維状粒子の結合間距離が伸びる。結合間距離が伸びることでアスベストの繊維状粒子が結晶構造を失って、非晶質に変化する。非晶質とはアモルファス状態を意味し、アスベストを構成する分子の配列に規則性がなくなった状態である。衝撃エネルギーによって、アスベストの繊維状粒子を構成する分子の規則的な配列がなくなるため、アスベストは無害化される。
【0028】
衝撃体4は、アスベスト含有物に衝撃エネルギーを効果的に与えられるものであればよく、硬質で重量のあるものが好ましい。例えば、鉄球やステンレス球、セラミックボール等が挙げられる。
【0029】
反応器1内の衝撃体4に衝撃エネルギーを発生させる手段として、反応器1の回転手段、反応器1内部に撹拌子や撹拌翼を設けた撹拌手段、振動手段等を用いることができる。反応器1として、遊星式、転動式、振動式のボールミルやビーズミル、タワーミル等、衝撃型ミルを好適に使用できる。なかでも、遊星ボールミルは、図2に示すように、反応器1が自転軸を中心に自転(破線矢印)するとともに、回転テーブル2の回転(実線矢印)で反応器1が公転軸を中心に公転することによって衝撃体4に高い衝撃エネルギーを発生させ得る。
【0030】
遊星ボールミルに代表される衝撃型ミルは、小型の装置であり運搬可能であるため、実験室や、アスベスト含有物を回収した場所で即時に無害化し得る。
【0031】
また、アスベスト含有物は繊維状粒子の拡散を防止すべく、硬化剤で固めている場合があるが、遊星ボールミルに代表される衝撃型ミルは高い衝撃エネルギーを発生させることができるため、このような硬化させたアスベスト含有物に対しても使用することができる。
【0032】
また、図3に示すように、反応器1に還元剤5を更に加えて処理することが好ましい。還元剤5を入れると、反応器1の回転或いは振動で、衝撃体4及び還元剤5に衝撃エネルギーを一体として発生させることができる。これにより、反応器1内では、アスベスト含有物3と衝撃体4と還元剤5が激しく衝突し、アスベストの繊維状粒子の結合間距離を伸ばし、繊維状粒子を非晶質にする。還元剤5を加えることで、衝撃体4のみの場合よりも効率的にアスベストの繊維状粒子が磨り潰されるため、より短時間での無害化を可能としている。
【0033】
更に、還元剤5が電子を放出し、この電子が、アスベストの構成成分を還元する。ここで、アスベストの構成成分、特に鉄成分やケイ素を還元する。アスベストの繊維状粒子は衝撃によって結合間距離が伸びて非晶質になっているため、電子移動が起こりやすく構成成分の還元が促進される。アスベストの構成成分の還元によって、アスベストの分子組成が変化する。アスベストは他の物質に変化するため、アスベスト含有物は分子レベルで無害化される。
【0034】
還元剤5としては、二A族、三A族及び四A族元素から選択される1以上の金属が好ましい。このような金属として、アルミニウムやカルシウムが挙げられる。また、アスベスト含有物は回収の際、アスベストの飛散を抑制するため、通常水分を含ませているが、水を含有するアスベスト含有物も無害化できる。
【0035】
なかでも、アルミニウムはアスベスト含有物に水分が含まれていても、水分によってアルミニウム内部までは水酸化物を形成しにくい。このため、衝撃体4等との衝撃でアルミニウムが磨り潰され、電子を放出しうる金属アルミニウムが露出し還元剤として機能するため、より好適に使用できる。また、アルミニウムの形状について特に制限はないが、粉末状にして用いることが好ましい。アルミニウムとアスベストとの反応が促進されるためである。
【0036】
また、衝撃体4の表面を還元剤5で覆ったものを使用してもよい。別途還元剤を入れる必要がなくなる。
【0037】
上記のようにアスベスト含有物を処理することにより、アスベストを完全に無害化した成形原料を得ることができる。
【0038】
なお、上記説明では、遊星ボールミルに代表される衝撃型ミルを用いる場合について説明したが、アスベスト含有物に外力を付加してアスベストの繊維状粒子の結合間距離を伸ばし、繊維状粒子を非晶質にできればどのような手段を用いてもよい。上述の衝撃力を付加する形態のほか、例えば、ローラーミル等を使用し、剪断力でアスベストの繊維状粒子の結合間距離を伸ばし、非晶質にする形態であってもよい。
【0039】
続いて、成形原料を成形する工程について説明する。前述の無害化処理によって得た成形原料を任意の手法により、所定の形状に成形すればよい。一例としては、成形原料を加圧して成形することができる。成形原料を加圧する際、高圧力で成形することが好ましい。例えば、任意の形状の金型に成形原料を充填して加圧することにより、用途にあった様々な大きさ、形状の成形体が得られる。加圧する際に成形原料が受ける圧力が、90MPa以上、好ましくは100〜300MPaとなるようにするとよい。低圧で加圧成形する場合に比べ、成形体の圧縮強度を高めることができる。
【0040】
成形原料を加圧する際に、真空ポンプ等を用い、真空雰囲気下で加圧してもよい。真空中にて高圧で成形することにより、成形体の内部にほとんど空気が残留しないので、物理強度が高く、寸法精度の良好な成形体を得ることができる。
【0041】
また、成形原料に無機質結合材を混合し、加圧成形してもよい。無機質結合材として、消石灰、ドロマイト、石膏、水酸化マグネシウム等のように、空気中で容易に炭酸ガスや水と反応して硬化体となる材料を用いるとよい。なお、これらはいずれか一種を単独で用いても、二種以上の混合物として用いてもよい。例えば、無機質結合材として消石灰(Ca(OH))を用いた場合、加圧成形後に空気中或いは炭酸ガス雰囲気中で養生を行うと、
Ca(OH)+CO→CaCO+H
に示すように、炭酸ガスを吸収して炭酸カルシウムとなる。これによって、成形体の物理強度を更に高めることとなる。
【0042】
このようにして得た成形体は、物理強度が高く、そしてアスベストの本来有する特性である耐熱性、耐薬品性、絶縁性等にも優れる。成形原料は前述の無害化処理により、アスベストが無害化されて安全であるため、レンガやタイル、セメント、漆喰等、各種建築用素材として再利用することができる。
【0043】
また、本実施形態では焼成を行っていないため、成形体にするエネルギーが少なくて済み、環境にも優しい。しかも、熱処理を施していないため、窯変による変色が生じることもなく、加圧成形前の成形原料の色と同色の成形体を再現できる。また、セメント製品と異なり、成形原料をスラリー状にしていないため、成形体に白華ができず綺麗な表面となるとともに、成形原料に顔料を混入して加圧するだけで所望の色に呈色することもできる。
【0044】
上記では一例として、焼成を行わない加圧成形方法について説明したが、本願はこれに限定されるものではなく、アスベスト含有物を無害化した成形原料を成形した後、焼成してもよい。また、成形原料にバインダーや水等を加えて混練し、壁等に塗布してもよい。硬化して壁等の形状に沿った形状に成形される。
【実施例1】
【0045】
まず、図2に示した還元剤を添加しない形態で、アスベストを無害化できるか否か検証する。アスベストはいくつかの種類に分類されており、中でもクリソタイル(MgSi10(OH))、クロシドライト(Na(Fe2+,Mg)Fe3+Si22(OH))、及びアモサイト((Fe2+,Mg)Si22(OH))が主に工業的に使用されている。アモサイトは硬度が5.5〜6と、クリソタイル(硬度2.5〜4)及びクロシドライト(硬度4)よりも高い特性を有し、悪性中皮腫の原因になりうるため、アスベストの中でも最も悪性の強い物質の一つである。
【0046】
本実施例では硬度が高く、衝撃で非晶質になりにくいアモサイトを用いて無害化を行うことで、種々のアスベストを無害化できることを検証する。
【0047】
反応器に遊星ボールミルを用い、アスベスト含有物の無害化を行った。遊星ボールミルは公転と自転による高い粉砕エネルギーを得られる粉砕機である。
【0048】
遊星ボールミルはレッチェ製PM−100(公転自転比率=1/−2)を用いた。容量250ml(内径:75mm、深さ70mm)のジャーを使用し、衝撃体としてボール径が10mmのステンレス球を20個使用した。ステンレス球の重量は3.2g/個である。
【0049】
ジャーにアモサイトを20%含有する試料5g及び上記ステンレス球を入れ、常温で遊星ボールミルを運転した。遊星ボールミルの回転数は公転数を400rpm、自転数を−800rpmとし、処理時間を0.5時間、1時間、3時間及び6時間として、それぞれについて無害化を行った。
【0050】
その後、無害化処理したそれぞれの試料について、JIS A1481に基づき、X線回折法及び位相差顕微鏡による分散染色法にて残留アスベストの定性分析を行った。
【0051】
JIS A1481の基準によれば、X線回折測定におけるアスベストのピークの存在、及び、位相差顕微鏡において所定粒子数の中に繊維状粒子が一定数以上存在するか観測することで、アスベスト含有物か否かを判定する。
【0052】
位相差顕微鏡による観測では、アスペクト比(長さ/幅)が3以上の粒子が繊維状粒子として扱われる。1000粒子を3サンプル計数し、総数の3000粒子中に繊維状粒子が4以上存在するとアスベストとして扱われる。たとえ、X線回折測定によりアモサイトのピークが現れていない場合でも、粒子数が3000の中に繊維状粒子が4以上含まれているとアスベスト含有物として扱われる。なお、X線回折においてピークが観測されても、位相差顕微鏡による観測で3000粒子中に4以上の繊維状粒子が見受けられない場合、アスベスト含有物として扱われることはない。
【0053】
本実施例ではアスベストとしてアモサイトを使用しており、X線回折測定ではアモサイトのピークが2θ=11度及び29度付近に現れる。また、位相差顕微鏡による分散染色法では屈折率1.680及び1.700にてアモサイトが観測される。
【0054】
図4に、無害化処理を行う前の試料のX線回折測定図、図5に同試料の位相差顕微鏡写真を示す。図4では、11度及び29度付近に大きなピークが現れている。また、図5では、屈折率1.680及び1.700双方に繊維状粒子が確認できる。これらから、無害化処理前の試料はアスベストの一種であるアモサイトを含有していることが明らかであり、アスベスト含有物と認定されるものである。
【0055】
図6に無害化処理後の試料のX線回折結果を示す。図6中、(A)は0.5時間、(B)は1時間、(C)は3時間、(D)は6時間処理した試料のX線回折測定図である。
【0056】
図6(A)及び(B)では11度及び29度付近にピークが残っているが、(C)及び(D)ではピークが弱まっているのがわかる。したがって、1時間から3時間程度の処理でアスベストを無害化できるものと推定できる。また、3時間処理したものと6時間処理したものではピークが同様に小さいことから、3時間以上処理すれば十分無害化可能と考えられる。
【0057】
また、図7に処理済試料の位相差顕微鏡写真を示す。図7中、(A)は0.5時間、(B)は1時間、(C)は3時間、(D)は6時間処理した試料の位相差顕微鏡写真である。
【0058】
図7(A)の屈折率1.680の中心、(B)の屈折率1.680の中心、及び(B)の屈折率1.700の中心にアスペクト比3以上の繊維状粒子が存在している。一方、図7(C)及び(D)では、いずれにもアスペクト比3以上の繊維状粒子は見られない。非結晶性物質は位相差顕微鏡で観測できないことから、ステンレス球による衝撃で、アモサイト分子の結合間距離が伸び、繊維状粒子は結晶構造を失い、非晶質に変わったことがわかる。
【0059】
次に、1000粒子を3サンプル計数し、総数の3000粒子中の繊維状粒子を計測し、定性分析によるアスベストの有無を判定した。定性分析結果を表1に示す。
【表1】

【0060】
反応時間が0.5時間、及び1時間の試料では繊維状粒子が4以上含まれおり、アスベスト含有物として扱われる。一方、反応時間が3時間、及び6時間の試料においては繊維状粒子が全く見受けられなかった。また、X線回折におけるアモサイトのピークも弱い。したがって、3時間以上処理すれば、完全に繊維状粒子の結晶構造を非晶質に変えることができる。3時間以上の処理で3000粒子中の繊維状粒子を3以下にできるため、無害化率は100%であり、アスベスト含有物を完全に無害化できる。
【実施例2】
【0061】
続いて、還元剤を添加した場合に、アスベストを無害化できるか否か検証を行った。還元剤としてアルミニウムを用い、実施例1と同様にアスベスト含有物の無害化を行った。アルミニウムは約300メッシュの粉末状にして2g使用した。遊星ボールミルの回転数は400rpmとし、反応時間は0.5時間、1時間、3時間及び6時間のそれぞれについて行った。
【0062】
無害化処理後、それぞれの試料をJIS A1481号に基づき、実施例1と同様に定性分析を行った。
【0063】
図8に無害化処理後の試料のX線回折結果を示す。図8中、(A)は0.5時間、(B)は1時間、(C)は3時間、(D)は6時間処理した試料のX線回折測定図である。
【0064】
図8(A)では11度及び29度付近にアモサイトのピークが残っているが、(B)、(C)及び(D)では、徐々にピークが弱まってきている。したがって、0.5時間から1時間程度の処理時間でアスベスト含有物は無害化されるものと推定できる。(B)、(C)及び(D)ではいずれもピークが小さいため、1時間以上処理すれば十分無害化可能と考えられる。また、図6に示す実施例1のX線回折図と比較すると、特に0.5時間処理した試料、及び1時間処理した試料で、ピークが小さくなっていることが明らかである。アルミニウムを添加したことで、衝撃体のみの処理よりも処理時間を短縮できることがわかった。
【0065】
また、図9に処理後の試料の位相差顕微鏡写真を示す。図9中、(A)は0.5時間、(B)は1時間、(C)は3時間、(D)は6時間処理した試料の位相差顕微鏡写真である。
【0066】
(A)の屈折率1.680の中心に繊維状粒子が確認できる。一方、(B)、(C)及び(D)では繊維状粒子を確認することはできず、非晶質になったことがわかる。
【0067】
次に、1000粒子を3サンプル計数し、総数の3000粒子中の繊維状粒子を計測し、定性分析によるアスベストの有無を判定した。定性分析結果を表2に示す。
【表2】

【0068】
反応時間が0.5時間の試料では繊維状粒子が4粒子含まれているが、反応時間が1時間、3時間、及び6時間の試料においては、繊維状粒子は0か1である。また、X線回折測定図におけるアモサイトのピークも弱い。したがって、1時間、3時間、及び6時間処理した試料はアスベスト含有物とは扱われない。このことからも、還元剤を添加することで、1時間以上処理すれば、3000粒子中の繊維状粒子を3以下にでき、無害化率100%を達成していることがわかる。
【0069】
同様の条件で還元剤を入れずに行った場合、無害化率を100%にするためには無害化処理に3時間程度要していたが、還元剤の効果によって1時間程度での無害化処理が可能となった。還元剤を入れることで、衝撃体と還元剤の一体となった衝撃エネルギーにより、還元剤のグラインド効果の相乗効果が発揮され、無害化処理時間の短縮を可能としている。
【実施例3】
【0070】
続いて、還元剤がアスベストの構成成分を還元し、アスベストが他の物質に変化していることの検証を行った。
【0071】
実施例1のように、還元剤を加えず、衝撃体のみで繊維状粒子を非晶質にして無害化した場合、化学反応を伴わないため、無害化処理前の試料と無害化処理後の試料では構成する原子の状態(原子価)に変動はない。一方、還元剤を加えて無害化処理をした場合、アスベストの繊維状粒子を非晶質にして無害化するだけでなく、還元剤が電子を放出する。そして、その電子を受けてアスベストを構成する原子の原子価が変化し、アスベストは他の物質に変化すると考えられる。
【0072】
ここでは、アルミニウム粉末と、アルミニウム粉末を添加してアモサイト含有物を無害化処理した試料とを光電子分光法にて測定し、アルミニウム成分の変化を見ることで、アルミニウム粉末が電子を放出したことを検証する。
【0073】
また、アモサイトは上述した化学式からわかるように、鉄成分(Fe2+)、ケイ素(Si)を含んでいる。衝撃体のみで無害化処理した試料と、アルミニウムを添加して無害化処理した後の試料とを光電子分光法にて測定し、アモサイトの構成成分である鉄成分、及びケイ素の変化を見ることにより、アモサイトの分子組成が変化し他の物質に変化したことを検証する。
【0074】
図10は、アルミニウム粉末、及び、アルミニウム粉末を添加して無害化処理して得られた成形原料のアルミニウム成分の状態(原子価)を示す光電子分光法測定図である。図10中、(a)はアルミニウム粉末を添加してアモサイト含有物を無害化処理して得られた成形原料、(b)はアルミニウム粉末の測定図である。
【0075】
アルミニウム粉末(b)ではAl3+(3価)とAl(0価)の2つのピークに分離しており、電子を放出し還元剤として機能し得るAlの存在を確認できる。一方、成形原料(a)ではAlのピークはなく、Al3+のピークのみ現れていることがわかる。したがって、添加したアルミニウム粉末中のAlは無害化処理の過程でAl3+に変化しており、電子を放出し、還元剤として働いていることがわかった。
【0076】
図11は、衝撃体のみで無害化処理した試料と、アルミニウム粉末を添加して無害化処理した試料の鉄成分の状態(原子価)を示す光電子分光法測定図である。遊星ボールミルの回転数を650rpmとして、無害化処理を行ったものであり、図11中、(a)はアルミニウム粉末を添加してアモサイト含有物を無害化処理した試料、(b)はアルミニウム粉末を添加せずにアモサイト含有物を無害化処理した試料の測定図である。
【0077】
アルミニウム粉末を添加せずに無害化処理を行った(b)では、還元剤として作用するAl(0価)が存在しないため、アモサイトを構成する鉄成分として、712〜713eV付近にFe2+(2価)のピークのみが現れている。一方、アルミニウム粉末を添加して無害化処理した(a)では706〜709eVにFe2+とは別のピークが生じていることがわかる。このピークはFe(0価)のピークである。アルミニウム粉末を添加して無害化処理を行うと、アモサイトを構成するFe2+が、無害化処理の過程で価数の低い鉄(Fe)に変化したことを示している。
【0078】
なお、衝撃体に用いたステンレス球は鉄成分(Fe)を含むため、ステンレス球が反応の過程で磨耗し、ステンレス球の鉄成分(Fe)が処理物に混入して、鉄成分(Fe)が測定される可能性も考えられる。しかしながら、図11中(a)及び(b)では、(a)でアルミニウム粉末を添加する以外、同一の条件で行っている。この結果、アルミニウム粉末を添加していない(b)ではFe2+のみのピークしか見当たらず、0価のFeは見当たらない。よって、ステンレス球から鉄成分(Fe)は混入していないことがわかる。
【0079】
また、図12に、セラミックボールミルを用い、アルミニウム粉末を添加せずにアモサイト含有物の無害化処理を行った試料の鉄成分の状態を示す光電子分光法測定図を示す。衝撃体としてセラミックボール(Al:93.4%、SiO:5%、比重3.6)を用いているため、ボールの磨耗はおこらない。図12に示す測定図は、図11(b)の測定図とほぼ一致していることから、ステンレス球を用いた場合でも、ステンレス球の磨耗による鉄成分(Fe)の混入はないことを確認した。
【0080】
これらから、アルミニウム粉末を添加して無害化処理した場合に、現れる0価のFeのピークは、ステンレス球を構成する鉄成分(Fe)が処理物に混入したものではなく、アモサイトを構成するFe2+自身が還元されて、Feになったものであることが確認できた。
【0081】
したがって、アモサイトを構成する鉄成分(Fe2+)が電子を受け、価数の低い鉄(Fe)に変化、すなわち還元されたことから、アルミニウム粉末を添加して無害化処理すれば、アモサイトを構成するFe2+がFeに変化するため、アモサイトは他の物質に変わったと考えられる。
【0082】
また、アモサイトを構成しているケイ素(Si)についても、同様に光電子分光法にて測定した。その電位について表3に示す。なお、本値は実際の測定値から、炭素の1s軌道の電位(結合エネルギー)値を同一にして補正した値である。
【表3】

【0083】
アルミニウム粉末を添加して無害化すると、アルミニウム粉末を添加せずに無害化した場合に比べ、Si2p軌道の結合エネルギーが小さくなっていることがわかる。アルミニウム粉末を添加していない試料が104.94eVに対し、アルミニウム粉末を添加した試料では100.04eVと、4.90eVも小さくなっている。このように結合エネルギーが小さくなっていることは、ケイ素が電子を受け、それを放出しやすい状態になったものと考えられる。よって、アルミニウム粉末から電子を受け、ケイ素が還元されたことがわかる。
【0084】
このようにアスベストを構成するケイ素についても還元が起こっているため、Fe2+を含まないクリソタイルに対しても、還元により他の物質に変化させ、分子レベルでの無害化が可能であると考えられる。
【0085】
図10結果から、添加したアルミニウムのAl(0価)が電子を放出し、Al3+となることがわかる。そして、図11の結果から、Alから放出された電子はアモサイト分子を構成する鉄成分(Fe2+)に与えられ、Fe2+は価数の低い鉄(Fe)に還元されることがわかる。また、表3の結果から、Alから放出された電子によってケイ素の結合エネルギーを低下させたことから、ケイ素も還元されていることがわかる。このように、アモサイト分子を構成する鉄成分(Fe2+)が価数の低い鉄(Fe)に変化し、また、ケイ素の結合エネルギーが小さくなったことから、アモサイトの分子組成自体に変化をもたらしており、アモサイトは別の物質に変化したものと考えられる。
【0086】
したがって、アスベストが分子レベルで無害化され、もはやアスベスト含有物として扱われることがない。よって、この無害化した処理物を成形原料として再利用しても安全性を損なうことがない。
【実施例4】
【0087】
続いて、上記のようにアスベストを無害化して得た成形原料を使用し、上述の加圧成形方法にてタイル状の成形体を製造した。
【0088】
成形原料のみを加圧成形した成形体1、及び、成形原料と消石灰を4:6の割合で混合して加圧成形した成形体2の2種類を製造した。それぞれの成形体の大きさは、一片400mmの正方形で、高さが11mmである。いずれも成形性は良好であった。そして、それぞれの成形体について曲げ破壊過重及び曲げ強度を測定した。その測定結果を表4に示す。
【表4】

【0089】
陶磁器質タイルの曲げ破壊荷重は、JISタイル A5209の基準によると、内装タイルの壁用で12N/cm以上、床用で60N/cm以上と定められている。成形原料のみからなる成形体1では、曲げ破壊加重28N/cmであり、壁用の内装タイル壁用の基準値を超えている。従って、無害化処理して得られた成形原料のみを成形した場合、内装用の建材として再利用できることがわかる。また、成形原料に消石灰を混合して得られた成形体2では、曲げ破壊荷重が74N/cmと、JISの内装タイル壁用及び床用双方の基準値を超えている。従って、消石灰を混合することにより、十分な強度を得ることが出来、アスベスト含有物を漆喰やタイル、レンガ、セメント等の内装用の建材として再利用できる。
【図面の簡単な説明】
【0090】
【図1】アスベスト含有物のリサイクル方法の工程図である。
【図2】無害化処理工程を示す概略図である。
【図3】無害化処理工程を示す概略図である。
【図4】無害化処理前の試料のX線回折図である。
【図5】無害化処理前の試料の位相差顕微鏡写真である。
【図6】(A)〜(D)は無害化処理した試料のX線回折図である。
【図7】(A)〜(D)は無害化処理した試料の位相差顕微鏡写真である。
【図8】(A)〜(D)は還元剤を添加して無害化処理した試料のX線回折図である。
【図9】(A)〜(D)は還元剤を添加して無害化処理した試料の位相差顕微鏡写真である。
【図10】アルミニウムを添加して無害化処理した試料のアルミニウム成分の変化を示す光電子分光法測定図である。
【図11】無害化処理した試料の鉄成分の変化を示す光電子分光法測定図である。
【図12】セラミックボールミルを用いて無害化処理した試料の鉄成分の変化を示す光電子分光法測定図である。
【符号の説明】
【0091】
1 反応器
2 回転テーブル
3 アスベスト含有物
4 衝撃体
5 還元剤

【特許請求の範囲】
【請求項1】
アスベスト含有物に外力を付加してアスベストの繊維状粒子の結合間距離を伸ばし、前記繊維状粒子を非晶質にして成形原料にする工程と、
前記成形原料を所定の形状に成形する工程と、を具備する、
ことを特徴とするアスベスト含有物のリサイクル方法。
【請求項2】
反応器に前記アスベスト含有物と衝撃体を入れて回転又は振動させ、前記衝撃体による衝撃で前記アスベストの繊維状粒子の結合間距離を伸ばす、ことを特徴とする請求項1に記載のアスベスト含有物のリサイクル方法。
【請求項3】
前記反応器に衝撃型ミルを用いて前記衝撃体による衝撃エネルギーを増加させる、ことを特徴とする請求項2に記載のアスベスト含有物のリサイクル方法。
【請求項4】
前記反応器に更に還元剤を入れ、前記衝撃体及び前記還元剤による一体とした衝撃で前記アスベストの繊維状粒子の結合間距離を伸ばし、前記繊維状粒子を非晶質にする、ことを特徴とする請求項2又は3に記載のアスベスト含有物のリサイクル方法。
【請求項5】
前記還元剤が前記アスベストの構成成分の一部を還元する、ことを特徴とする請求項4に記載のアスベスト含有物のリサイクル方法。
【請求項6】
前記アスベストの構成成分の一部が鉄成分あるいはケイ素である、ことを特徴とする請求項5に記載のアスベスト含有物のリサイクル方法。
【請求項7】
前記還元剤として二A族、三A族及び四A族元素から選択される1以上の金属を使用する、ことを特徴とする請求項5に記載のアスベスト含有物のリサイクル方法。
【請求項8】
前記還元剤としてアルミニウムを使用し、前記アスベスト含有物が水を含有していてもアスベストの構成成分を還元する、ことを特徴とする請求項7に記載のアスベスト含有物のリサイクル方法。
【請求項9】
前記成形原料を加圧して成形する、ことを特徴とする請求項1乃至8のいずれか1項に記載のアスベスト含有物のリサイクル方法。
【請求項10】
真空下で前記成形原料を加圧する、ことを特徴とする請求項9に記載のアスベスト含有物のリサイクル方法。
【請求項11】
前記成形原料に無機質結合材を混合して加圧し、空気中或いは炭酸ガス雰囲気中にて養生を行う、ことを特徴とする請求項9又は10に記載のアスベスト含有物のリサイクル方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図6】
image rotate

【図8】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図5】
image rotate

【図7】
image rotate

【図9】
image rotate


【公開番号】特開2010−36153(P2010−36153A)
【公開日】平成22年2月18日(2010.2.18)
【国際特許分類】
【出願番号】特願2008−204448(P2008−204448)
【出願日】平成20年8月7日(2008.8.7)
【出願人】(508240753)三協興産株式会社 (2)
【出願人】(504324202)
【出願人】(500174937)
【Fターム(参考)】